发布时间:2015-09-14 13:29 原文链接: PNAS:衰老导致线粒体功能下降增加糖尿病患病风险

  最近一项研究发现相比于年轻人来说,老年人的肌肉线粒体从催化脂肪酸代谢转向催化葡萄糖代谢的能力下降,而这可能是导致衰老相关的2型糖尿病发生和葡萄糖耐受性损伤的重要原因。相关研究结果发表在国际学术期刊PNAS上。

  在美国,年龄大于65岁的老年人更易患2型糖尿病或葡萄糖不耐受。科学家们对其中的原因了解较少,但一些研究发现肌肉胰岛素抵抗,同时肌细胞内脂质含量增加,代谢速率下降与衰老密切相关。因此,研究人员对于探究老年人与年轻人肌肉细胞线粒体的差别非常感兴趣。

  在这项研究中,研究人员首先对平均年龄为69岁的非吸烟健康老年人进行了24小时饥饿处理随后进行了口服葡萄糖测试并检测了他们的肌肉细胞脂质含量。结果表明饥饿后老年个体的血糖浓度比年轻个体更高,而其他因子如胰岛素浓度则没有差异;而口服葡萄糖之后老年个体的血糖浓度和胰岛素浓度都显著高于年轻个体;他们的肌肉细胞脂质含量也更高。

  随后研究人员利用高胰岛素-正葡萄糖钳夹实验结合同位素标记的葡萄糖探究了老年人对血浆胰岛素水平增加的应答情况,结果表明老年个体对葡萄糖的代谢速率慢于年轻个体。

  研究人员为了对肌肉细胞线粒体功能有更加精确的了解,他们开发了一种新的方法可以利用液相色谱-质谱技术结合同位素标记的葡萄糖对线粒体内两种关键代谢酶的催化速率变化进行研究。他们测定了肌肉线粒体内代谢产物从丙酮酸脱氢酶到柠檬酸合酶的流动速率,并将该结果与平均年龄为27岁的年轻个体进行匹配分析。结果表明饥饿后两组肌肉线粒体内代谢产物从丙酮酸脱氢酶到柠檬酸合酶的流动速率基本相同,进行了胰岛素刺激之后,年轻个体的代谢产物流动速率增加了3倍,而老年个体组没有发生变化。

  这些结果表明,在进行胰岛素刺激后,年轻个体的线粒体能够从脂质氧化向葡萄糖氧化进行转变,而这种变化在老年组并不明显。这表明肌肉细胞内的胰岛素信号损伤与衰老有关,这可能是导致老年人2型糖尿病和葡萄糖不耐受高发的一个重要因素。

相关文章

科学家发现线粒体中的RNA修饰可促进癌细胞转移

肿瘤细胞在转移过程中会消耗远超正常细胞需要的能量,德国癌症研究中心的研究团队发现了与能量代谢相关的新型癌细胞转移的促进因素,相关成果在《Nature》发表,论文的标题为:MitochondrialRN......

人体糖分就能发电,美大学研制新超薄葡萄糖燃料电池

众所周知,葡萄糖是一种人体从食物中吸收的糖。它是我们身体里每个细胞的能量来源。但通过科学家们的不懈努力,它最终有一天或许也能为医疗植入物提供动力。近期,麻省理工学院(MIT)和慕尼黑技术大学(theT......

老年健将的“线粒体”与众不同

  一些年纪较大的运动员的高成绩可能归功于线粒体。图片来源:FATCAMERA/ISTOCK  近日,《eLife》发表的一项研究显示,肌肉活检表明,与久坐不动......

体内葡萄糖可以发电?功率密度超高超薄葡萄糖燃料电池

麻省理工的科学家们开发了一种仅400纳米厚(发丝的1/100厚)的超薄葡萄糖燃料电池,每平方厘米能产生43微瓦电能,是目前环境条件下葡萄糖燃料电池中功率密度最高的。可耐受600摄氏度高温灭菌,可以覆膜......

线粒体分裂通过调控相变促进巨噬细胞吞食癌细胞

阐明巨噬细胞如何有效地吞食癌细胞对设计下一代肿瘤免疫治疗有重要意义。近日,中山大学孙逸仙纪念医院苏士成教授团队发现线粒体分裂通过改变吞噬机器两个重要成分WIP和WASP相变,从而促进巨噬细胞吞食癌细胞......

“西北风”巧变“粮”二氧化碳成功合成葡萄糖和脂肪酸

通过电化学耦合生物发酵实现将二氧化碳和水转化为长链产品的示意图。科研团队供图科学家又用空气中的二氧化碳“变魔术”了。此前,我国科学家在国际上首次实现了二氧化碳到淀粉的从头合成。那么,二氧化碳除了可以“......

科研人员研发靶向线粒体凋亡的增强免疫疗法新策略

大多数肿瘤靶向治疗策略聚焦于癌症信号通路的上游靶点,从而诱导下游细胞凋亡。然而,癌细胞复杂的信号转导网络可以在靶点下游形成各种补偿机制,造成肿瘤耐药。靶向线粒体凋亡可以实现直接诱导癌细胞凋亡,是肿瘤靶......

除了“淀粉”外二氧化碳合成“粮食”的新招来了

此前,我国科学家在国际上首次实现了二氧化碳到淀粉的从头合成。那么,二氧化碳除了可以“变”淀粉,还能“变”其他东西吗?答案是肯定的!4月28日,以封面文章形式发表于《自然—催化》的一项最新研究表明,电催......

基因编辑技术,最后一块拼图补齐

韩国基础科学研究所(IBS)基因组工程中心研究人员开发了一种新的基因编辑平台,称为类转录激活因子效应相关脱氨酶(TALED)。TALED是能够在线粒体中进行A到G碱基转换的碱基编辑器。这一发现是长达数......

活性氧调控植物免疫的分子机制在这个细胞器里被发现

从西北农林科技大学获悉,该校农学院单卫星教授课题组发现并揭示出参与线粒体RNA加工的PPR蛋白RTP7及其调控植物免疫的分子机制,系统证明了线粒体活性氧(mROS)参与调控植物对多种不同类型病原菌的广......