发布时间:2016-02-16 15:57 原文链接: 著名学者庄小威Science再发突破性新成果

  来自美国石溪大学、哈佛大学、康宁公司 (Corning Incorporated)及宾夕法尼亚州立大学等机构的研究人员,揭示出了嘌呤体(Purinosome)与线粒体之间的空间共定位及功能上的关联。这一重要的研究发现发布在2月12日的《科学》(Science)杂志上。

  哈佛大学的庄小威(Xiaowei Zhuang)教授,美国石溪大学助理教授Jarrod B. French,康宁公司的Ye Fang,以及宾夕法尼亚州立大学的Stephen J. Benkovic教授是这篇论文的共同通讯作者。

  嘌呤(Purine)是存在于身体内的一种物质,主要以嘌呤核苷酸的形式存在,在作为能量供应、代谢调节及组成辅酶等方面起着十分重要的作用。在哺乳动物细胞中是通过补救生物合成信号通路与从头生物信号通路协同作用来维持嘌呤的水平。在正常生理状况下补救生物合成信号通路维持了嘌呤核苷酸水平,但在生长过程中从头生物合成信号通路会上调并在癌细胞中发生改变。

  嘌呤体是由一些参与嘌呤生物合成的酶形成的组装体,其可通过从头生物合成信号通路来保护不稳定的中间物并提高代谢流。这些结构是动态的,响应嘌呤耗竭而形成,其发挥作用促进了从头嘌呤生物合成。嘌呤体的形成是细胞周期依赖性的,G蛋白偶联受体(GPCR)激动剂和CK2(casein kinase 2)可对其进行调控。有研究发现,包含嘌呤体的细胞数量增加与Lesch-Nyhan氏疾病中嘌呤补救缺陷程度呈正相关。通过一些细胞条件来破坏嘌呤体形成可促进对癌症化疗的敏感性。但目前对于这些结构的时空控制机制却仍然知之甚少。

  在这篇Science文章中,研究人员采用超分辨率显微镜证实嘌呤体与线粒体共定位,她们通过分离出嘌呤体酶及线粒体进一步支持了这些结果。并且,包含嘌呤体的细胞数量会响应线粒体功能及代谢失调而发生改变。为了探究细胞内信号的作用,研究人员采用无标记检测技术进行了激酶组(kinome)筛查,发现mTOR影响了嘌呤体组装。抑制mTOR可减少嘌呤体-线粒体共定位,抑制线粒体失调刺激嘌呤体形成。

  这些数据揭示出了由mTOR介导的嘌呤体与线粒体之间的一种关联,及mTOR通过时空控制蛋白质结合而调控核苷酸代谢的一种机制。

  庄小威是世界著名的华人女科学家。其早年毕业于中国科技大学少年班,34岁时成为了哈佛大学的化学和物理双学科正教授,是哈佛物理系和化学系少有的双科教授。2012年庄教授当选为美国国家科学院院士,刷新了美国科学院最年轻华人院士的纪录。她所研发的超高分辨率技术STORM与诺奖得主Eric Betzig的成果不相伯仲,却和2014年的诺贝尔化学擦肩而过。

  每年,庄小威都会领导课题组在Science、Nature、Cell三大期刊上发布一些她们取得的重大科研突破。2016年开年,庄小威的研究小组采用超分辨率成像揭示出了不同表观遗传状态的独特染色质折叠。这一重要的成果发布在1月13日的Nature杂志上(著名学者庄小威Nature发布重要表观遗传发现 )。2015年10月,庄小威采用超高分辨率成像绘制出了神经元突触输入区的图谱。这一重要的研究成果发布在Cell杂志上(著名学者庄小威Cell发布突破性技术 )。2015年4月,庄小威(领导研究团队在Science杂志上发表了一项突破性的单分子成像技术MERFISH。该技术可以在单细胞水平上实现空间分辨的高度多重化RNA分析,打破了目前的技术限制

相关文章

线粒体翻译损伤通过激活线粒体UPR延长线虫寿命

近日,《氧化还原生物学》(RedoxBiology)在线发表了中国科学院分子细胞科学卓越创新中心研究员周小龙研究组与中国科学院生物物理研究所研究员陈畅研究组的合作研究成果Mitochondrialtr......

新研究揭示了一种代谢物是如何导致炎症和疾病的

一项突破性的研究发现了线粒体的一种代谢物与触发炎症反应之间的联系。作为我们细胞的重要组成部分,线粒体在执行各种任务中发挥着至关重要的作用,如细胞运作所需的化学反应。这些功能之一是生产能量,这对细胞生长......

新的细胞内烟雾探测器被发现

波恩大学和新加坡国立大学的科学家们发现了一种新型的细胞内"烟雾探测器"。这种传感器会提醒细胞注意线粒体的损坏--线粒体是提供能量的细胞动力室。这种传感器的功能失调可能导致慢性皮肤病......

Nature:科学家发现癌细胞中线粒体发挥功能的关键信息

长期以来科学家们一直知道,线粒体在癌细胞的代谢和能量产生过程中扮演着重要角色,然而截止到目前为止,研究人员并不清楚线粒体网络的结构组织与其在整个肿瘤水平下的功能性生物能量活性之间的关联。近日,一篇发表......

端粒、线粒体、炎症“关系匪浅”衰老三标志共同作用可防癌

随着年龄的增长,染色体的端粒逐渐缩短。美国索尔克研究所的科学家们发现,当端粒变得非常短时,它们会与“细胞的发电厂”线粒体进行交流。这种交流会触发一组复杂的信号通路,并引发炎症反应,从而破坏可能癌变的细......

α7nAChR介导线粒体氧化应激来拮抗Aβ诱导的心房重构

阿尔茨海默病(AD)和房颤(AF)都是与年龄相关的疾病,经常共存。AD与房颤之间的关系已被流行病学研究证实,一些研究也认为房颤可以显著增加AD的风险,这主要是由于房颤引起的脑低灌流、氧化损伤和炎症失衡......

国外研究揭示非典型线粒体RNA加工机制

tRNA作为核酸酶释放侧翼转录的识别位点,决定了哺乳动物线粒体中典型RNA加工过程,但并非所有的线粒体转录物都由tRNA控制。瑞典卡罗林斯卡医学院科研人员使用果蝇和小鼠模型,研究证明了线粒体蛋白DmA......

生物物理所等研发出修补线粒体损伤的小分子融合激动剂

1月12日,中国科学院生物物理研究所胡俊杰团队与南开大学陈佺团队、中科院昆明植物研究所郝小江团队合作,在NatureChemicalBiology上,发表了题为Smallmoleculeagonist......

科研人员研发修补线粒体损伤的小分子融合激动剂

2023年1月12日,中国科学院生物物理研究所胡俊杰团队与南开大学陈佺团队及中国科学院昆明植物所郝小江团队在《NatureChemicalBiology》杂志上合作发表了题为"Smallmo......

Nature子刊:基因改造线粒体延长寿命

线粒体(mitochondrion),是细胞的“能量工厂”,线粒体内有一套独立于细胞核的遗传物质——线粒体DNA(mtDNA)。由于线粒体在能量稳态中的重要作用,因此,线粒体障碍会导致多种疾病发生,包......