发布时间:2016-03-10 16:11 原文链接: 上海光机所超强超短激光成功产生反物质

  每一种粒子都有一个与之相对的反粒子,1932年由美国物理学家卡尔·安德森在实验中证实了电子的反粒子,即正电子的存在。1936年,安德森因发现正电子而获得了该年度的诺贝尔物理奖。反物质研究在高能物理、宇宙演化等方面具有重要意义,同时也具有重要应用,比如正电子断层扫描成像(PET)在癌症诊断等方面已广泛应用。

  中国科学院上海光学精密机械研究所强场激光物理国家实验室利用飞秒拍瓦激光装置和高压气体靶相互作用(如图),产生大量高能电子,高能电子和高Z材料靶相互作用,由韧制辐射机制产生高强度伽马射线,伽马射线再和高Z原子核作用产生正负电子对。正电子谱仪经过精心设计,成功解决了伽马射线带来的噪声问题,利用正负电子在磁场中的不同偏转特性,实验中在单发条件下就成功观测到了正电子。这是我国首次报道利用激光产生反物质[PHYSICS OF PLASMAS 23, 033109 (2016)]。

  上海光机所早在2001年就开始超强超短产生正负电子对的理论研究,提出利用强激光和纳米薄膜靶相互作用产生正负电子对[PHYSICAL REVIEW E 65 016405(2001)]。该工作在国际上得到了广泛关注,3篇发表在REVIEWS OF MODERN PHYSICS 以及2篇发表在Plasma Phys. Rep 的综述文章都介绍了这一工作,同时,有5篇发表在Phys. Rev. Lett.的论文引用了这一工作。

  超强超短激光产生的超快正电子源,在材料的无损探测等方面具有重大应用。

相关文章

反物质恒星或是破解谜题的关键

反物质和正物质的质量和电荷数是一样的,但电荷的符号不一样,是相反的。通常,原子核带正电,电子带负电。反物质则是正常物质的镜像,它们拥有带正电荷的电子和带负电荷的原子核。李祖豪中国科学院高能物理研究所研......

首次观测粲介子在正反物质间“变身”

据美国趣味科学网站23日报道,英国牛津大学的科学家分析了大型强子对撞机(LHC)第二轮运行产生的数据,首次捕捉到粲介子从物质“变身”到反物质的过程,这一发现有助于理解现在的宇宙为何由物质而非反物质组成......

正—反物质不对称性有了新证据

近日,欧洲核子研究中心(CERN)宣布,大型强子对撞机(LHC)上的LHCb实验发现了D介子的正—反物质不对称性,并表示这项发现“绝对会被写进粒子物理的教科书”。这一发现被CERN研究和计算主任Eck......

科学家精确比较原子和反原子

物理学家调整激光器开展反氢原子试验。图片来源:MAXIMILIENBRICE/CERN正如任何《星际迷航》粉丝所了解的,反物质被认为是物质的确切对立物,以至于如果两者发生碰触,将在放出一瞬间的纯能量光......

最精准的光谱测量反物质光谱测量精度达万亿分之二

英国《自然》杂志近日发表一项粒子物理学研究成果:欧洲核子研究中心(CERN)科学家完成了到目前为止对反物质的最精准光谱测量。此次测量结果不仅证明了反原子光谱学的能力,也将反物质的高精度检测向前推进了一......

多国学者高精度测量反物质

近日,《自然》发表的一篇论文报告了到目前为止对暗物质进行的最精准的一次光谱测量。这次发现不仅证明了反原子光谱学的能力,也将反物质的超敏检测向前推近了一步。图片来源于网络解释为何是物质而不是反物质在大爆......

6个国际团队争相回答宇宙最深处的问题

在欧洲核子研究中心(CERN)一个天花板极高的库房内,6个竞争性的实验正在争先恐后地赛跑,以了解宇宙中最难琢磨的一种物质的特征。这些实验相隔仅数米,从所处位置看,它们几乎堆叠在一起,每个设备与另一个设......

自然及子刊综览

《自然——粒子物理学》反物质研究取得新进展本周《自然》在线发表的一项研究报告了对反物质原子的首次光谱测量——反物质物理学长期以来的一个目标。该发现代表着人类向高精度测试物质与反物质行为是否不同迈进了重......

反物质原子光谱测量首次完成

英国《自然》杂志19日在线发表了一项粒子物理学重大进展:欧洲核子研究中心(CERN)报告了对反物质原子的首次光谱测量,实现了反物质物理学研究长期以来的一个目标。该成果标志着人类向高精度测试物质与反物质......

变形中微子有望破解反物质之谜

超级神冈探测器正在搜寻物质和反物质间的差异。为何宇宙中充满了物质而非反物质是物理学的最大谜题之一。现在,日本的一项研究或许给出了答案:中微子这种亚原子粒子在物质形态和反物质形态的表现不同。在近日于美国......