发布时间:2016-08-03 16:35 原文链接: GenesDev解析致癌组蛋白突变引发癌症的分子机制

  来自清华大学医学院李海涛教授课题组7月31日在《基因与发育》(Genes&Development)杂志上发表了题为《Molecular basis for oncohistone H3 recognition by SETD2 methyltransferase》(甲基转移酶SETD2识别致癌组蛋白的分子基础)的研究论文。这一工作首次揭示出组蛋白H3致癌点突变(oncogenicmutation)通过抑制甲基转移酶SETD2的甲基转移活性导致癌症发生的结构基础,为SETD2或致癌组蛋白靶向的药物设计提供了新思路。

  表观遗传在从基因表达调控到细胞命运决定的众多生物学过程中发挥着关键作用。组蛋白翻译后修饰是一类重要的表观遗传调控机制,被认为构成一类广义的“组蛋白密码”,调控着染色质层面的遗传信息解读。组蛋白修饰调控因子(如乙酰化和去乙酰化酶,甲基化和去甲基化酶等)异常通常会导致各种人类疾病,尤其是癌症的发生。近五年来的研究表明,组蛋白自身突变也会导致癌症。有趣的是,这些突变往往发生在组蛋白的赖氨酸位点或其临近残基,比如组蛋白H3第9位,27位和36位的赖氨酸或第34位甘氨酸等。上述组蛋白突变导致癌症发生的生化、细胞和分子机制是当前表观遗传学研究的一个热点。

  组蛋白H3第36位赖氨酸到甲硫氨酸(H3K36M)和异亮氨酸(H3K36I)的点突变已经在成软骨细胞瘤,结肠直肠癌等病人样本中被发现。H3K36位点能够被多种甲基化酶修饰,包括NSD1/2/3,ASH1L和SETD2等。其中SETD2能够在H3K36位点上产生三甲基化修饰(H3K36me3),并在转录延伸,RNA剪接和DNA损伤修复等过程中发挥关键调节作用。

  今年五月,美国洛克菲勒大学的C. David Allis教授和梅奥诊所的张志国教授分别在《科学》杂志发表论文,发现H3K36M或H3K36I突变可以通过一种“竞争性结合”机制“毒害”SETD2等甲基转移酶活力,导致细胞内组蛋白H3K36甲基化水平整体降低,进而改变癌症相关基因表达并诱导癌症发生。与上述研究互补,发表在《基因与发育》的论文在2.05埃和1.5埃分辨率水平解析了SETD2的催化结构域与H3K36M/I突变多肽的复合物晶体结构,首次揭示出SETD2识别致癌组蛋白突变的结构基础;同时本研究还结合突变体酶活分析鉴定出组蛋白识别关键残基,并通过竞争性酶活实验证实了组蛋白H3K36M/I突变体多肽对SETD2的反式抑制(trans-inhibition)活力。

  在最新这项研究中,研究人员首次捕捉到处于完全开放构象的SETD2催化结构域复合物结构,与之前解析的H3K36甲基转移酶家族自抑制构象截然不同。有趣的是,在自抑制构象中占据组蛋白H3多肽底物结合口袋的一段环区(loop),在开放构象形成过程中经历剧烈构象变化,一方面摆出来使组蛋白H3多肽能够进入底物结合通道,另一方面又以“反平行准β-折叠片层”方式参与了组蛋白H3多肽识别,显示出这一环区片段的“抑制+识别”的“双面”(dualistic)功能。

  同时,复合物晶体结构解析还揭示SETD2的H3K36结合口袋主要由疏水和芳香性残基组成。其中,H3K36M的甲硫氨酸侧链与SETD2活性口袋中的Y1666侧链形成稳定的“硫-芳香环”以及“CH-π”氢键相互作用,实现了SETD2催化结构域对H3K36M突变的偏好结合;而对于H3K36I的偏好识别则主要来自疏水作用和CH-π氢键作用的贡献。结构叠合分析揭示H3K36M和H3K36I残基侧链具有高度一致的旋转构象(rotamer),保证了二者在H3K36结合口袋的紧密插入;如果将H3K36突变成与异亮氨酸类似的亮氨酸 (L) ,则会因为亮氨酸侧链末端的分叉导致空间位阻的产生,进而从结构角度解释了为什么只有K36M和K36I两种突变,而不是K36L等其它类型突变能够抑制SETD2活性,并最终导致癌症发生。

  此外,组蛋白H3G34位点的突变(G34R/V/W/L)在神经胶质瘤和成软骨细胞瘤里也被广泛发现。晶体结构解析揭示H3G34被深深地包埋在SETD2底物结合通道里,而该通道的高度狭窄性决定了只有甘氨酸这样没有侧链的残基才能结合,把甘氨酸突变成其它大侧链残基(如R/V/W/L)都会导致组蛋白H3不能有效进入底物结合通道,因此不能被SETD2甲基化,呈现出一种顺式抑制(cis-inhibition)作用。该发现为阐明H3G34突变致癌的分子机理提供了指导。

  清华大学医学院李海涛教授是论文通讯作者,医学院2012级直博生杨爽为论文第一作者,生命联合中心博士后郑向东作为第二作者参与了本项研究。清华大学医学院李国民教授,洛克菲勒大学教授C.DavidAllis教授及其博士后路超参与了本项研究,并提供指导和协助。本课题得到科技部国家重点研发计划、教育部自主科研计划、北京结构生物学高精尖创新中心、清华-北大生命科学联合中心、生物治疗协同创新中心等资助。论文中的放射性酶活实验得到了生命医学测试中心同位素平台李德老师的指导和协助。衍射数据收集得到上海同步辐射光源BL17U线站和结构生物学中心范仕龙博士的大力支持与协助。

相关文章

新发现揭示亲代组蛋白遗传影响细胞分化命运

人体大概有200多种细胞类型,这些细胞都是从同一个受精卵发育而来,它们拥有几乎完全一样的基因组信息,但其形态和功能千差万别。近几十年的研究发现,表观基因组图谱对于细胞身份的决定至关重要。但仍有一个主要......

清华大学最新Nature发文:NuA4选择性乙酰化组蛋白H4的机理

生物体遗传信息DNA缠绕组蛋白八聚体1.7圈形成了染色体的基本组成单位——核小体。组蛋白H4的N端尾巴与临近的核小体相互作用,促进染色体高级结构的形成以及异染色质沉默。核小体组装和异染色质形成阻碍了D......

我国科研团队发现影响番茄成熟的新机制

番茄是世界上产量最大的蔬菜之一,经常由于番茄过度成熟而导致较大经济损失,然而科学家对番茄成熟的分子机制了解尚不明确。近日,我国科学家揭示了新的番茄果实成熟的调控机制,研究成果发表在《NewPhytol......

科学家绘制人类单细胞染色质可及性图谱

在人类细胞中,总长约2米的基因组DNA通过与组蛋白缠绕形成核小体,并经过螺旋折叠等方式盘绕形成染色体进而团聚于直径10微米的细胞核中。在细胞内的DNA需要进行转录等活动的时候,DNA才会从组蛋白中释放......

新研究揭示水稻组蛋白甲基化调控根系核心菌群

根系微生物组与植物的养分吸收、抗病抗逆等生长发育过程密切相关,其在植物根系的定殖和组装受环境和植物遗传途径等因素的影响。表观遗传调控是调节染色体行为和基因表达的重要机制,探究表观遗传途径与植物根系微生......

血清素化显著增加了WDR5对组蛋白H3的结合亲和力

组蛋白H3Q5(H3Q5ser)的血清素化是最近发现的组蛋白翻译后修饰,在神经元细胞分化过程中作为与H3K4me3协同作用的基因激活的许可标记。然而,任何特异性识别H3Q5ser的蛋白质仍然未知。20......

Polycomb组蛋白与染色质相互作用的关键机制

2021年6月,GenomeResearch杂志在线发表了法国巴黎萨克雷大学植物科学研究所MoussaBenhamed教授为通讯作者题为“Polycomb-dependentdifferentialc......

揭示了组蛋白促进停滞DNA复制叉重启的重要功能

DNA复制是一个十分精细的分子调控过程,在DNA复制过程中体内体外大量的刺激因素如UV、染色质高级结构的阻拦等会产生DNA复制压力(replicationstress),从而使得复制叉停滞(forks......

组蛋白去乙酰化酶复合体调控光形态建成新机制

植物基因在光形态建成中会发生转录的重编程,同时伴随染色质的动态变化和组蛋白修饰的动态分布。大量光响应基因由于染色质开放性的变化,在“开(激活)”和“关(抑制)”之间切换以确保植物适应不断变化的光照环境......

单分子力谱定量解析泛素修饰对基因调控研究获进展

人类基因组包含大约31.6亿个DNA碱基对,线性DNA分子作为庞大遗传信息的载体一般都比较长(人类一条染色体的DNA长度约为2米),生命通过组蛋白将DNA分子有序组织压缩形成微米级别的染色质存储到细胞......