发布时间:2016-08-24 16:32 原文链接: 吉林大学Cell子刊发表表观遗传学研究成果

  高等生物的基因组DNA围绕着由四种组蛋白组成的八聚体,形成碟状的核小体结构。基因组DNA以这样的形式包装成为染色质,使DNA受到良好的保护。染色质的结构和动态受到组蛋白表观遗传学修饰的调控,比如最近发现的组蛋白赖氨酸巴豆酰化。这种组蛋白修饰在基因表达、DNA损伤应答等重要的细胞过程中起到了关键性作用。

  与组蛋白赖氨酸乙酰化不同的是,人们对巴豆酰化赖氨酸的读取机制还不是很了解。吉林大学和西奈山伊坎医学院的研究团 队对此进行深入研究,揭示了YEATS结构域识别巴豆酰化赖氨酸的分子机制。这项研究最近发表在Cell旗下的Structure杂志上,吉林大学第一附 属医院表观遗传医药研究所的Qiang Zhang使这篇文章的第一作者和通讯作者,另一位通讯作者是西奈山伊坎医学院的周明明(Ming-Ming Zhou)教授。

  周明明教授是美国纽约西奈山伊坎医学院结构与化学生物系主任、终身教授,长期致力于表观遗传调控的结构和机制、基于 结构的小分子药物设计和疾病生物学等方面的研究。先后发表文章110余篇,获得多项美国联邦、州以及私立研究基金。目前与吉林大学第一附属医院正在合作进 行表观遗传学研究。

  研究人员发现,AF9的YEATS结构域优先结合组蛋白H3的巴豆酰化赖氨酸。他们获得了AF9 YEATS结构域与H3K18cr形成复合物时的3D结构。核磁共振结构分析显示,组蛋白H3赖氨酸18的巴豆酰化赖氨酸深埋在YEATS结构域的芳香族 笼子(aromatic cage)中。研究人员还通过突变分析,验证了YEATS识别巴豆酰化赖氨酸的关键蛋白残基。研究指出,YEATS与巴豆酰化赖氨酸的结合机制是保守的。 这些发现有助于了解细胞在不同生物背景下如何解读巴豆酰化赖氨酸标记。

  多细胞生物的每个细胞都携带着相同的遗传学信息。不过,不同类型的细胞只激活特定的基因组合。哪些基因在何时被激 活,主要取决于表观遗传学调控。科罗拉多大学的和北卡罗来纳大学的研究团队首次揭示了一种关键表观遗传学标签的“读取器”,这一突破性研究发表在四月十八 日的Nature Chemical Biology杂志上。

  表观遗传学修饰可以在不改变DNA序列的情况下调控基因的活性,对于人类发育和人类疾病有深远的意义。组蛋白修饰是一种重要的表观遗传学修饰,包括甲基化、乙酰化、磷酸化、泛素化、ADP-核糖基化等等。

  在芯片和二代测序技术的帮助下,研究者们通过检测基因组的表观遗传学状态,鉴定了大量值得深入研究的甲基化区域。 应该如何进一步研究或验证这些区域呢?对大量样本进行全基因组扫描显然是不现实的,这样做的成本太高。实际上,也没有必要为了部分区域去检测整个基因组 DNA,本文介绍的工具就足以完成这样的任务。

  目 前已知的DNA修饰都是人们偶然发现的。MIT和佛罗里达大学的研究人员最近开发了一个探索未知DNA修饰的系统方法,并将其发表在美国国家科学院院刊 PNAS杂志上。他们把生物分析化学、比较基因组学和长读取测序结合起来,在细菌中发现了一种新的DNA修饰。这种修饰可以帮助细菌抵御入侵者,保护自己 的基因组。研究人员指出,细菌和病毒中应该还有多种不为人知的DNA修饰,它们有望成为抗生素的新靶标或者是基因工程的新工具。

相关文章

综述:化学干预靶向致癌m6A修饰蛋白

RNA表观遗传学为基因表达调控提供了一个新的切入点,以RNAm6A甲基化修饰为代表开辟了RNA表观遗传的研究新方向。首个m6A去甲基化酶FTO的发现证实了m6A修饰的动态可逆性,成为推动m6A领域发展......

组蛋白去乙酰化酶Rpd3S核小体去乙酰化和DNAlinker收紧的分子机制

近日,中国科学院广州生物医药与健康研究院联合澳门大学,在《细胞研究》(CellResearch)上,在线发表了题为Structuralbasisofnucleosomedeacetylationand......

新发现揭示亲代组蛋白遗传影响细胞分化命运

人体大概有200多种细胞类型,这些细胞都是从同一个受精卵发育而来,它们拥有几乎完全一样的基因组信息,但其形态和功能千差万别。近几十年的研究发现,表观基因组图谱对于细胞身份的决定至关重要。但仍有一个主要......

研究人员发现防御纳米粒子的祖先表观遗传防御机制

来自芬兰综合方法开发与验证中心(FHAIVEFHAIVE)和坦佩雷大学的科学家们发现了一种与纳米粒子暴露有关的新型反应机制,这种机制在不同的物种中是共享的。博士研究员GiusydelGiudice博士......

国外新技术可同时绘制多个表观遗传标记

瑞典卡罗林斯卡医学院和斯德哥尔摩大学的科研人员开发了Nano-CT,可以同时探测单个细胞和数千个细胞中的几种不同组蛋白标记,更详细地研究小鼠大脑中细胞如何获得独特属性和专门化。研究结果发表在《自然生物......

清华大学最新Nature发文:NuA4选择性乙酰化组蛋白H4的机理

生物体遗传信息DNA缠绕组蛋白八聚体1.7圈形成了染色体的基本组成单位——核小体。组蛋白H4的N端尾巴与临近的核小体相互作用,促进染色体高级结构的形成以及异染色质沉默。核小体组装和异染色质形成阻碍了D......

我国科研团队发现影响番茄成熟的新机制

番茄是世界上产量最大的蔬菜之一,经常由于番茄过度成熟而导致较大经济损失,然而科学家对番茄成熟的分子机制了解尚不明确。近日,我国科学家揭示了新的番茄果实成熟的调控机制,研究成果发表在《NewPhytol......

科学家绘制人类单细胞染色质可及性图谱

在人类细胞中,总长约2米的基因组DNA通过与组蛋白缠绕形成核小体,并经过螺旋折叠等方式盘绕形成染色体进而团聚于直径10微米的细胞核中。在细胞内的DNA需要进行转录等活动的时候,DNA才会从组蛋白中释放......

新研究揭示水稻组蛋白甲基化调控根系核心菌群

根系微生物组与植物的养分吸收、抗病抗逆等生长发育过程密切相关,其在植物根系的定殖和组装受环境和植物遗传途径等因素的影响。表观遗传调控是调节染色体行为和基因表达的重要机制,探究表观遗传途径与植物根系微生......

血清素化显著增加了WDR5对组蛋白H3的结合亲和力

组蛋白H3Q5(H3Q5ser)的血清素化是最近发现的组蛋白翻译后修饰,在神经元细胞分化过程中作为与H3K4me3协同作用的基因激活的许可标记。然而,任何特异性识别H3Q5ser的蛋白质仍然未知。20......