近日,来自哈佛医学院(Harvard Medical School,HMS)和意大利理工学院(Istituto Italiano di Tecnologia,IIT)的科学家在虚拟现实(virtual reality)的迷宫里训练老鼠进行语音识别任务,发现在不同脑功能皮层区域的神经元群体在面对决策时形成鲜明对比,揭示了工作记忆和决策的潜在神经机制。这一研究以“Distinct timescales of population coding across cortex”(不同皮层编码的时间尺度)为题发表在《自然》(Nature)杂志上。

  哈佛医学院神经生物学助理教授、共同通讯作者Christopher Harvey表示,他们的研究是朝着大脑思考的方向发展,而不是单个神经元的活动,即当神经元在一起工作时有什么特殊之处。在他看来,揭示神经元群体如何工作和应对紧急情况产生的反应有助于我们更好地理解复杂脑功能的基础机制。

  为了探索神经元群体如何在大脑的不同区域在一起工作,Harvey和他的同事对小鼠在虚拟现实环境中进行训练。

  例如,让老鼠在一个漂浮在空气垫上的球体上跑步,一个T形迷宫投影到他们面前的屏幕上并发出声音,让老鼠判断这一声音是来自迷宫的左侧还是右侧。

  随着小鼠开始执行任务,研究团队开始记录神经元群体活动,大约每次50组神经元群体,包括处理声音的听觉皮层(auditory cortex,AC)、皮层刺激区域后顶叶皮层(posterior parietal cortex,PPC)以及其他感官区域,从中找出它们复杂的认知功能相关性。

  据悉,这项研究使用最新开发的计算技术来分析每个神经元的影响。结果发现:在听觉皮层的神经元群体(AC)倾向于相互独立工作,每个神经元对他人的影响小;相反,后顶叶皮层神经元(PPC)的数量对彼此影响很大,并且似乎协同工作;单个神经元的活动是短暂的,但在不同时间点活跃的神经元在一起工作的神经元可以携带更长时间的信息;在后顶叶皮层,强烈的合作活动允许神经元群携带声音识别任务的信息长达1秒钟;听觉皮层的神经元群只携带几百毫秒的信息。

  Christopher Harvey教授说:“听觉皮层神经元的瞬时激活非常适合快速波动的声音。但顶叶皮层神经元在在更长的时间尺度上协同工作,因为它们需要随着时间的推移整合信息以做出最好的选择。”

  为了支持这一假设,研究小组发现,在试验中老鼠更容易做出正确的选择:顶叶皮层神经元似乎作为一个群体工作得更好,神经元的活动具有更强的耦合性。在较弱的耦合试验中,老鼠似乎更可能做出错误的选择。

  虽然单个神经元的活动已经研究了几十年,但最近的技术进步使神经科学家能够同时研究大量神经元。Harvey说,这项研究的结果对于解释神经元群体如何相互作用并揭示出诸如不同的活动时间尺度等涌现的特性,对于研究高级认知功能具有重要意义。

  Harvey希望我们能够理解顶叶和听觉皮层之间的差异的网络和突触机制,就越有可能了解短期或工作记忆的机制。在他看来,越是开发出更多的工具和方法来思考神经元的数量,就越能理解大脑。


相关文章

Aβ寡聚体与神经元作用机制研究获进展

中国科学院重庆绿色智能研究院与重庆大学、中科院上海高等研究院和上海交通大学等合作,在Aβ42寡聚体与神经元作用机制研究中取得进展。Aβ42寡聚体可以引起神经元的功能缺失,从力学生物学的角度研究其作用机......

刘明院士团队:自旋神经形态器件研究新进展

生物启发脉冲神经网络架构有望通过模拟人脑的高算力、高并行度、低功耗等特性,解决冯·诺依曼架构存储墙和能效瓶颈等问题。然而,面向构建脉冲神经网络的神经形态硬件的研究尚处于探索阶段,基于传统CMOS的神经......

3016个神经元和54.8万个突触,首张昆虫大脑图谱绘就

图片来源:EyeofScience/SciencePhotoLibrary科学家绘制了第一张完整的昆虫大脑图谱,包括所有神经元和突触。这是理解大脑如何处理感官信息流并将其转化为行动的里程碑式成就。相关......

感觉神经元的过度机械传导会导致关节挛缩

近日,美国斯克利普斯研究所ArdemPatapoutian及其小组发现,感觉神经元的过度机械传导会导致关节挛缩。这一研究成果于2023年1月13日发表在国际学术期刊《科学》上。研究人员表示,远端关节挛......

更逼真人工有机神经元问世

瑞典林雪平大学研究人员创造了一种人工有机神经元,能逼真模仿生物神经细胞的特征。这种人工神经元可刺激自然神经,使其成为未来各种医学治疗的有前途的技术。相关研究发表在最近的《自然·材料》杂志上。新开发的人......

神经元调节反应敏感度机制发现

科技日报柏林12月10日电(记者李山)近日,德国波恩大学领导的科研团队揭示了大脑中的神经元调整反应敏感度的机制。他们发现一种特殊酶可调控中间神经元,进而独立调节神经细胞对传入信号的反应敏感度。相关成果......

大脑神经元连接协调恰似“交响乐”

人类大脑有近860亿个神经元,每个神经元有多达10000个突触,形成了一个庞大的互连网络,构成了行为和认知的基础。最新一期《科学》特刊连发4篇文章,综述了科学家对大脑复杂连接(“连接组”)及其如何驱动......

重大突破!科学家发现可能导致阿尔茨海默病的新蛋白质

阿尔茨海默病(AD)是一种使人衰弱的渐进性疾病,开始时是轻微的记忆丧失,慢慢地破坏了认知功能和记忆。它目前没有治愈方法,预计到2050年将影响全球1亿多人。在美国,根据国家老龄化研究所的数据,AD是老......

人工神经元实现与活体细胞“对话互动”

揭秘大脑功能,解读脑部信号,不仅可为脑疾病提供诊疗依据,也能为研制类脑芯片提供思路。脑机接口是脑研究领域的热点,它是人脑与外界电子设备信息交互的通道,也是监测与解析脑部活动、治疗神经疾病、构建智能假肢......

鸟类维持更多脑细胞秘密找到了

鸟类有令人印象深刻的认知能力,有些鸟甚至表现出了高水平的智力。与同等大小的哺乳动物相比,鸟类大脑也包含更多的神经元。那么,鸟类如何维持更多脑细胞呢?现在科学家发现,其背后的秘诀是它们的神经元需要更少的......