发布时间:2017-07-25 15:41 原文链接: 研究发现植物光信号转导及泛素连接酶激活新机制

  光提供了植物生长所需要的能量,同时作为核心环境信号因子调控着植物各个阶段的生长发育。此前,通过筛选与光受体相互作用的因子,人们鉴定到光信号通路的核心转录因子Phytochrome Interacting Factor 3 (PIF3)。

  在暗中,PIF3稳定存在,利于植物在土壤等暗环境中的生长;见光后,PIF3迅速降解,伴随着启动植物的光形态建成等生命过程。PIF3在暗中的积累以及见光后的迅速降解对于植物在不同光环境中的生存具有决定意义,它的稳定性如何受调控一直是植物光信号转导领域的核心科学问题。CRL3LRBs是已报道的促进PIF3降解的E3连接酶,然而遗传学分析表明CRL3LRBs是光形态建成的负调控因子,它们可同时降解PIF3及红光受体phyB [Science 344, 1160-1164 (2014)]。因此,CRL3LRBs的主要功能可能是促进phyB的降解从而削弱光信号作用。

  北京大学现代农学院、生命科学学院邓兴旺/陈浩东团队近期研究鉴定到促进PIF3降解的一组新的E3泛素连接酶SCFEBF1/2,与此前报道的CRL3LRBs不同,SCFEBF1/2正调控光形态建成。该研究发现,暗中生长的植物见光过程中,SCFEBF1/2可以通过泛素化PIF3促进其快速降解,该调控过程依赖于被光激活的光敏色素诱导的PIF3的磷酸化。

  一般情况下F-box蛋白与底物的识别和相互作用决定了SCF复合体对该底物的活性,有趣的是,PIF3与EBF1/2的相互作用不依赖于光信号或者PIF3的磷酸化,但PIF3-EBF1/2与SCF核心组分的结合依赖于光信号或者PIF3的磷酸化,由此该研究发现了一种新的SCF复合体的激活机制。

  进一步研究表明,此前鉴定的CRL3LRBs E3泛素连接酶主要在强光条件下促进光敏色素phyB与PIF3的降解,而SCFEBF1/2在弱光与强光下均可以促进PIF3降解但不影响phyB的含量。SCFEBF1/2最早是作为乙烯途径核心转录因子EIN3的E3泛素连接酶被鉴定出来的,在植物见光过程中,此前研究表明SCFEBF1/2可以通过促进EIN3降解来抑制乙烯信号进而促进光形态建成,本研究发现SCFEBF1/2可以促进代表性的光形态建成抑制因子PIF3的泛素化与降解,充分证明了SCFEBF1/2是植物中促进光形态建成的核心E3泛素连接酶,它可通过多方面整合光与乙烯信号来调控植物的发育。

  生命科学学院博士、现耶鲁大学博士后董杰为该论文的第一作者,生命科学学院副研究员陈浩东为该论文的通讯作者,其他作者包括耶鲁大学魏宁博士、现代农学院邓兴旺教授、加州大学伯克利分校倪为民博士和生命科学学院博士后于仁波。该研究工作得到了国家自然科学基金、美国国立卫生研究院、科技部国家重点研发计划、蛋白质与植物基因研究国家重点实验室与北大-清华生命科学联合中心的资助。

  【北京大学邓兴旺课题组】以水稻、拟南芥、玉米等为研究对象,主要从事植物光信号转导,杂交优势的分子机制,非编码RNA,全基因组选择技术等领域的研究工作。本课题组目前有教授1人,副研究员4人,博士后、技术员、学生多名,实验室有配套齐全的植物基因组学、分子生物学、生物信息学等相关设备,具有长期的植物基因组学及分子生物学研究经验。

  【北京大学陈浩东课题组】以拟南芥和苔藓为研究对象,探索光对植物生长发育调控的分子机制。我们前期的研究表明,以CULLIN 4 为核心的E3连接酶广泛参与光信号转导的过程,包括与光形态建成的抑制因子COP1-SPA复合体,CSN复合体 (COP9 signalosome, CSN),CDD (COP10, DDB1 and DET1)复合体的协同作用。目前在此基础上,我们将继续综合运用遗传学、生物化学、分子生物学、细胞生物学、基因组学等不同的实验手段,进一步解析光信号的传导通路。

相关文章

光敏色素PHYB蛋白在群体驯化中获得了适应性选择

株高作为重要的农艺性状,被育种和栽培研究者广泛关注。植株过高不仅容易倒伏,还影响种植密度,显著减少了作物产量。经过农业绿色革命,调控株高的关键基因被大量鉴定并广泛应用于育种,但在葫芦科园艺作物中报道不......

研究发现植物光信号转导及泛素连接酶激活新机制

光提供了植物生长所需要的能量,同时作为核心环境信号因子调控着植物各个阶段的生长发育。此前,通过筛选与光受体相互作用的因子,人们鉴定到光信号通路的核心转录因子PhytochromeInteracting......

研究发现植物光信号转导及泛素连接酶激活新机制

光提供了植物生长所需要的能量,同时作为核心环境信号因子调控着植物各个阶段的生长发育。此前,通过筛选与光受体相互作用的因子,人们鉴定到光信号通路的核心转录因子PhytochromeInteracting......

植物所在植物光形态建成转录调控方面取得进展

转录调控是生物体内由转录因子和其他调节蛋白协同或拮抗调控基因表达的重要生化机制。光信号是高等植物早期生长发育中光形态建成的决定性因素,其信号通路中光敏色素互作因子PIF为负向调控因子,HY5为正向调控......

Science:植物季节性生长全靠“体温计”

生物通报道:最近,由剑桥大学领导的一个国际科学家小组,发现了一种“温度计”分子,可使植物能够根据季节性的温度变化来生长。研究人员发现,称为光敏色素的分子——植物利用它在白天探测光,在黑暗中实际上改变了......

同期Science发表三篇中国学者成果

最新一期(10月20日)Science杂志公布了三项中国学者的最新成果:首次解析了生物最古老的光受体之一——隐花色素的工作机制、揭秘脊椎动物颌演化之路,以及2型Ryanodine受体RyR2门控机制的......

植物感光的“眼睛”:或可人工操纵

维斯特拉认为,植物光敏色素控制技术将给农业带来巨大改变,其最大的推动作用是让农民能以更高的密度进行栽植,在既定范围内生产出更多的作物,从而节省空间和其他资源。想在院子一小块地里种出高产的玉米?想在腊月......

北大邓兴旺教授发表本月第3篇PNAS文章

北京大学的邓兴旺(XingWangDeng)教授是世界著名的生物学家,其长期从事植物分子遗传及生理学方面的研究,多次在Cell、Science、Nature等世界权威刊物上发表很有影响的学术文章。并于......

Nature聚焦植物的“眼睛”

大多数的植物总是设法让自己向着太阳。来自哥德堡大学的科学家们与芬兰的同事们合作,了解了植物细胞中的光敏蛋白在发现光线时所做出的改变。研究结果发表在4月30日的《自然》(Nature)杂志上。相关的蛋白......