发布时间:2011-06-17 11:33 原文链接: 美开发出首个可见光隐身斗篷

  由于材料技术的限制,目前大多数隐身斗篷只对红外线等非可见光有效,即便能在可见光下实现隐形的也需要借助一定的条件。日前,美国加州大学伯克利分校的研究人员突破了这一难点,让隐身斗篷下的一个300纳米高、6微米宽的物体从全波段可见光中“消失”。相关论文发表在最新一期的《纳米快报》杂志上。

  据研究人员介绍,许多先前的研究都使用金属超材料作为制造隐身斗篷的“布料”,但在光学频率中,金属会吸收过多的光线并造成显著损失。今年2月,英国伯明翰大学的研究人员用具有双折射光学性质的方解石晶体来制造隐身斗篷并获得了成功,但该装置只对可见光波段具有某种特定偏振属性的光有效,即该装置只有在特定光线的照射下才能“隐形”。

  负责该项研究的加州大学伯克利分校教授张翔说,新的研究中,他们采用了一种被称为拟保角映射(QCM)的技术让一个300纳米高、6微米宽的物体在可见光全波段中实现了“隐形”。由于这种隐身斗篷上有一层覆盖物,研究人员称其为“地毯斗篷”。其中“地毯”在外观上如同一个平滑的镜面,通过一定的技术手段,观察者在可见光中无法察觉其下的覆盖物。

  要实现隐身,首先必须改变经过物体四周的光线,使其无法形成反射。为达到这一目的,研究人员设计了一种具有可变折射率的材料,并将其转化为一种自然界中先前并不存在的超材料。这种材料分为两层,衬底是一层透明的纳米多孔二氧化硅,其上是一片氮化硅波导。为达到改变折射率的目的,研究人员还在氮化物上蚀刻出很多小的孔洞以构成所需的图案。通过这种材料,斗篷便可以改变光线的路径,完全遮住下面物体的轮廓,从而达到隐身的目的。

  张翔称,该装置是首个可在可见光波段中奏效的隐身斗篷,新技术使可见光领域内的光学转换技术又前进了一步。除伪装外,研究人员将能更自如地操控光线,从而制造出更先进的显微镜和计算机。

相关文章

我国实现低毒性量子点近红外上转换与太阳光合成

近日,中国科学院大连化学物理研究所光电材料动力学研究组(1121组)吴凯丰研究员团队在量子点光化学研究中取得新进展,实现了低毒性量子点敏化的近红外光至可见光的上转换,并将该体系与有机光催化融合,实现了......

铁电极化助力Z机制人工光合系统可见光解水制氢研究

通过模拟自然光合作用,构建Z-机制人工光合系统,有望突破高效可见光解水的挑战,是实现太阳能驱动光解水制氢颇具潜力的途径(图1A)。然而,传统Z-机制系统中的光生电子与空穴在光催化材料表面分布无序,同时......

研究人员找到一种产生可见光的新路径

近日,加拿大国立科学研究院(INRS)教授LucaRazzari团队使用一种大多数实验室都在使用的工业级激光系统,通过在充满氩气的空心纤维中传播红外激光脉冲,非线性效应产生了高强度的短可见光脉冲。Lu......

新技术!这种分子装置可将红外线变成可见光

一个国际研究团队开发出一种检测红外光的新方法,通过将红外光的频率变为可见光的频率,可将常见的高灵敏度可见光探测器的“视野”扩展到远红外线。这一突破性研究发表在最近的《科学》杂志上。人类眼睛可看到400......

上海有机所在可见光介导的能量转移去芳构化方面获进展

可见光是一种清洁环保的可再生资源。可见光催化反应因其迥异于热化学转化的反应行为,近年来在有机合成中得到了广泛的应用。值得注意的是,将可见光诱导的能量转移过程与去芳构化反应相结合,可在温和的反应条件下高......

紫外红外可见光波长范围

可见光是电磁波谱中人眼可以感知的部分,可见光谱没有精确的范围。一般人的眼睛可以感知的电磁波的波长在400~760nm之间,但还有一些人能够感知到波长大约在380~780nm之间的电磁波。可见光通常指波......

生化分析仪在可见光范围内常用的光源是哪个?

光源:理想的光源应在整个波长范围内产生恒定的光强度,噪声低,长期稳定。遗憾的是实际上没有这样的光源,因此,需要依工作波段的不同选取不同的光源。氘灯可在紫外区产生一定强度的连续光谱,在可见区也能提供有用......

厦门大学龚磊课题组可见光驱动铜催化不对称合成新进展

厦门大学化学化工学院龚磊课题组在可见光驱动手性铜催化非环亚胺的不对称α-胺基烷基化研究中取得进展,相关结果“Photocatalyticenantioselectiveα-aminoalkylatio......

我国学者新技术可让红外图像“清晰显形”

利用红外线可实现夜视、遥感等强大功能,但红外线图像探测器普遍存在灵敏度差、效率低、价格贵等缺点。近期,中国科学技术大学教授史保森、副教授周志远等学者研究出一种新技术,可显著“点亮”被红外线照射物体的轮......

NaturePhotonics:颜色可调的超长有机磷光体!

在可见光谱中表现出长寿命、持久发光的材料在显示器,信息加密和生物成像等领域具有具有广泛的应用前景。有鉴于此,黄维院士、安众福以及新加坡国立大学刘小钢团队合作,报道了几种颜色可调的超长有机磷光体,为开发......