在国家自然科学基金重大研究计划项目(项目编号:91640203)等资助下,中国科学院生物物理研究所范祖森研究员在环状RNA调控造血干细胞稳态机制领域取得突破进展,揭示了一类特殊的环状RNA维持LT-HSCs (Long-term Hematopoietic Stem Cells,长期造血干细胞)静息态的分子机制。研究成果以“A Circular RNA Protects Dormant Hematopoietic Stem Cells from DNA Sensor cGAS-Mediated Exhaustion”(一类环状RNA抑制由DNA感受器cGAS所介导的长期造血干细胞耗竭)为题,于4月3日在著名学术期刊Immunity(《免疫》)上在线发表。

新型环状RNA(cia-cGAS)在LT-HSCs(长期造血干细胞)中抑制DNA感受器(cGAS)与自身DNA的结合,从而维持造血干细胞静息态。

  成人的造血干细胞在骨髓内绝大多数以静息状态存在,同时保持着自我更新及分化的潜能。长期造血干细胞(Long-term HSCs , LT-HSCs)作为潜能最高的干细胞系,为短期造血干细胞、多能干细胞等祖细胞提供了持续性细胞补给。然而,造血干细胞的干性维持受转录因子及骨髓内环境等多种因素的影响,它们在平衡静息状态与激活状态之间的精细调控机制尚未完全得到解析。

  “基因信息传递过程中非编码RNA的调控作用机制”重大研究计划的重要科学问题之一就是“发现与遗传信息传递相关的新的非编码RNA,特别是长非编码RNA及其功能”。范祖森研究员课题组为筛选和发现新的环状RNA在造血干细胞中的功能,首先从小鼠骨髓中分别分离了长期造血干细胞(LT-HSCs)与多能干细胞(multipotent progenitor cells ,MPPs),并在转录组水平解析二者的基因表达谱,发现D430042O09Rik基因可表达一类特殊的环状RNA,在LT-HSCs的细胞核内高度表达,其缺失会引起小鼠骨髓中静息态LT-HSCs的急剧减少。进一步研究发现,D430042O09Rik基因的敲除可引起LT-HSCs内I型干扰素的表达升高,这种环形DNA还与一种重要的DNA感受器分子----环状GMP-AMP合成酶(Cyclic GMP-AMP (cGAMP) synthase , 简称cGAS)发生相互作用。他们把这种环状RNA命名为cGAS拮抗环状RNA (circular RNA antagonist for cGAS,cia-cGAS)。

  cGAS作为胞质DNA感受器已被广泛研究。在结合DNA时,cGAS会催化cGAMP的生成,cGAMP能结合干扰素刺激因子(Stimulator of Interferon Genes,STING,又称为MITA)并诱导cGAS-STING信号通路的激活,从而上调I型干扰素(type I IFN)的表达和一系列免疫反应。cGAS不仅可以识别病原性DNA,还可识别机体自身DNA。在造血干细胞中,细胞核内的cGAS是如何避免与自身DNA结合并防止自身免疫反应和机体损伤,仍少见研究报道。范祖森研究员课题组的本项工作中,进一步从分子机制角度对cGAS拮抗环状RNA如何维持造血干细胞稳态进行探讨,结果提示,cia-cGAS在LT-HSCs中与cGAS分子形成复合物,抑制了cGAS的酶活性,因此阻碍了cGAS结合基因组DNA,从而不能激活I型干扰素的表达。动物实验显示,在cia-cGAS敲除的小鼠中,poly(I:C)(一种合成型的双链RNA(dsRNA)的类似物)与HSV病毒的刺激均可导致大量I型干扰素的产生,从而诱发自身免疫性疾病。

  该研究不仅发现了一个起源于D430042O09Rik 基因转录本的环状RNA(研究人员将其命名为cia-cGAS),而且探讨了这个新型环状非编码RNA对造血干细胞的干性维持的分子机制机制,为有效防治自身免疫性疾病与血液系统恶性肿瘤提供了新思路和潜在药物研发靶标。


相关文章

多功能植物小RNA分析工具|一站式小RNA分析及可视化

日,《科学通报》在线发表了华南农业大学园艺学院教授夏瑞团队最新研究成果,他们研究开发出一款多功能植物小RNA分析工具——sRNAminer,可便于研究人员进行一站式小RNA分析及可视化。据介绍,植物小......

中国科大:揭示跨膜蛋白SIDT1调控人类核酸摄取的分子机制

RNA干扰是指由双链RNA诱导的基因沉默现象,在细胞发育和抗病毒免疫等生物学过程中发挥重要作用,并被用作基因功能研究和疾病治疗的遗传工具。RNA干扰现象可在秀丽隐杆线虫全身及其后代中传播,被称为系统性......

研究发现“无中生有”的新基因起源机制

生物体的复杂性是由它们的基因编码的,但这些基因从何而来?据最新一期《美国国家科学院院刊》报道,芬兰赫尔辛基大学研究人员解决了围绕小分子RNA基因(microRNA)起源的悬而未决的问题,并描述了一种创......

中国科学院生物物理研究所发现古菌C/DRNA识别底物新规则

11月30日,中国科学院生物物理研究所叶克穷课题组在《中国科学:生命科学(英文版)》(ScienceChinaLifeSciences)上,在线发表了题为Complicatedtargetrecogn......

新发现!细菌RNA代谢调控新机制

近日,中国科学院水生生物研究所张承才团队关于细菌中RNA代谢调控机制的研究取得了进展。相关研究成果以《蓝藻中RNaseE受一个保守蛋白调控》(Aconservedproteininhibitorbri......

化学学院邹鹏课题组利用光催化邻近标记技术揭示应激颗粒转录组动态变化

应激颗粒是在胁迫条件下形成的动态结构,通常认为其中包含翻译被抑制的RNA以及翻译元件,并可在刺激消失后解聚,是细胞内典型的无膜细胞器。在应激颗粒组装的不同阶段,大量RNA分子会被招募至应激颗粒中,对维......

第357期双清论坛“RNA与重大疾病诊疗”在杭州召开

2023年11月21日-22日,国家自然科学基金委员会(以下简称自然科学基金委)第357期双清论坛“RNA与重大疾病诊疗”在杭州召开。本次论坛由自然科学基金委医学科学部、生命科学部、化学科学部和计划与......

中国科学院全国重点实验室,落户“大零号湾”

11月24日下午,闵行区人民政府、中国科学院分子细胞科学卓越创新中心以及上海交通大学在闵行区大零号湾科创大厦共同签署了战略合作协议。此次合作的核心内容是,核糖核酸功能与应用全国重点实验室(筹)将落户在......

遗传发育所玉米籽粒发育机制研究获进展

RNA编辑广泛存在于植物的线粒体和叶绿体中。RNA编辑作为一种RNA转录后加工机制,对于调控基因表达具有重要意义。RNAC-U的编辑是胞嘧啶(C)经过脱氨转变为尿嘧啶(U)的过程。在此过程中,PPR(......

综述:化学干预靶向致癌m6A修饰蛋白

RNA表观遗传学为基因表达调控提供了一个新的切入点,以RNAm6A甲基化修饰为代表开辟了RNA表观遗传的研究新方向。首个m6A去甲基化酶FTO的发现证实了m6A修饰的动态可逆性,成为推动m6A领域发展......