发布时间:2018-08-07 11:02 原文链接: 重磅!两篇Nature共同揭示:新型肺细胞

肺部离子细胞(橙色)通过邻近的上皮细胞(细胞核,青色)延伸至呼吸上皮层。这一新发现的细胞类型会高度表达CFTR,一种突变时与囊性纤维化有关的基因。(图片来源:ANNA HUPALOWSKA, DANIEL MONTORO)

  这两份围绕“呼吸上皮细胞”的最新研究揭示了数千个肺细胞的基因表达模式,从中挖掘出一种前所未知的新型肺细胞,即肺部离子细胞。更重要的是,这一新细胞会高度表达一种与囊性纤维化有关的突变基因——囊性纤维跨膜转导调控因子CFTR(cystic fibrosis transmembrane conductance regulator)。

  囊性纤维化是一种遗传性外分泌腺疾病,主要影响胃肠道和呼吸系统。CFTR缺乏和缺陷容易导致粘液增厚、气道堵塞和反复感染。

论文一:A revised airway epithelial hierarchy includes CFTR-expressing ionocytes

  哈佛大学医学院附属麻省总医院(MGH)的肺内科医生Jayaraj Rajagopal一直在研究肺再生,并希望通过单细胞测序分析肺干细胞群的差异。他和Broad研究所的计算生物学家Aviv Regev团队合作,共同鉴定了成年小鼠器官中数千个上皮细胞的转录图谱。

  研究团队分析了两种最常见的细胞类型:分泌细胞(club cells),分泌呼吸道粘液成分,包括抗菌分子以及免疫调控蛋白;纤毛细胞(ciliated cells),携带一种叫做纤毛的突出结构,负责清除粘液和碎片垃圾。此外,他们还分析了一些罕见、不常见的细胞类型,包括产生粘液蛋白的杯状细胞(goblet cells)、扮演免疫传感器的簇状细胞(tuft cells)、感知氧气水平和传递信号的神经内分泌细胞(neuroendocrine cells)。

  结果显示,上皮细胞下层的基底细胞(basal cells)不仅仅直接生成分泌细胞,还会生成除了杯状细胞以外的所有罕见细胞。他们发现,有几组呼吸道细胞基因表达模式存在前所未知的基因表达差异,以及发现肺部新的结构和细胞分化的新途径。他们还揭示了几种新的细胞类型,并将其中一种命名为“肺部离子细胞”(pulmonary ionocyte)。


  他们发现,这些肺部新细胞的基因表达模式类似于鱼类和两栖类的离子细胞,包括转录因子Foxi1的编码基因。在鱼类中,离子细胞通常负责调控动物组织与周围水环境之间的钠、氯和钙离子交换,从而维持体液溶质浓度平衡。目前还不清楚在哺乳动物呼吸道中,肺离子细胞是否具有类似功能,即便细胞确实表达有多种离子运输基因。

  更重要的是,研究团队发现,肺部离子细胞高度表达CFTR,而且是CFTR主要的来源。CFTR是一种有助于调控液体运输和粘液浓度的膜蛋白。在小鼠和人类肺模型中,这类细胞可能在囊性纤维化中发挥作用。

  “我们发现了很多改写肺部生物学的新知识点。” Rajagopal总结道。

  论文二:A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte

  另一项研究由诺华公司的生物学家Aron Jaffe和哈佛大学系统生物学家Allon Klein合作完成。Allon Klein之前已经开发了一种单细胞RNA测序方法,Aron Jaffe将其描述为“一种完美的技术,可以在呼吸道上对各种上皮细胞进行全面的观察和分析”。

  他们对人类支气管上皮细胞和小鼠气管上皮细胞进行RNA测序。同样,他们也发现了肺部离子细胞,以及在熟悉的细胞中发现新的基因表达模式。为了更好地了解离子细胞在囊性纤维化中可能的作用,研究团队比较了人类和小鼠离子细胞中CFTR的表达模式。与其他研究结果一致的是,研究人员发现,肺离子细胞是人类和小鼠呼吸道中CFTR蛋白的主要来源。

  “发现这一新型的罕见细胞类型,确实令人惊讶。CFTR已经被研究了很长一段时间,被认为在许多呼吸道细胞中广泛表达。但是现在的结果表明,上皮细胞比之前认为的要复杂得多。” Jaffe强调道。

  下一步

  现在,研究团队已经表明转录因子Foxi1是这些离子细胞转录程序的核心。下一步问题是:Foxi1是直接与CFTR基因相互作用,还是通过其他转录因子或其他蛋白调控CFTR基因表达?

  除了研究离子细胞在肺功能中的潜在作用外,研究人员认为还可以进一步分析最新数据,特别是关于转录因子和细胞表面标记的编码基因的表达细节。

相关文章

10分钟生成分割,AI可进行更精确、快速的细胞器定量分析

冷冻软X射线断层扫描(Cryo-SXT)是研究细胞超微结构的强大方法,可提供数十纳米范围的分辨率和膜结构的强烈对比度,无需标记或化学固定。较短的采集时间和相对较大的视场导致快速采集大量断层图像数据。将......

高分辨率评估人体细胞内的分子结构动态及药物作用机理

核糖体是细胞内的最丰富细胞器之一,负责将mRNA翻译为蛋白质,是很多小分子药物的作用靶点。核糖体在体外已得到广泛研究,但其在人体细胞翻译活跃过程中的分布仍不清楚。德国马克斯普朗克生物物理研究所利用高分......

干细胞研究引领医药行业变革

干细胞研究有望解决人类面临的重大医学难题,帮助人类实现修复创伤和病理组织、治愈终末期疾病的梦想。目前,全球进入人体试验的干细胞研究超8000项。我国至今尚未有干细胞产品或技术上市,需要干细胞应用研究和......

“特洛伊木马”细菌诱导癌细胞自毁

以色列特拉维夫大学科学家首次将细菌产生的毒素编码为信使核糖核酸(mRNA)分子,并将含有这些分子的纳米颗粒直接递送给癌细胞,使癌细胞产生毒素,最终自杀,自杀率约为50%。相关研究刊发于最新一期《治疗诊......

研究发现全新蛋白质修饰类型

细胞代谢为生命过程提供能量。同时,代谢物可共价修饰蛋白质来发挥信号传导功能。虽然许多代谢物在代谢通路中的作用广为人知,但它们介导细胞信号调控的功能有待探索。酮体(包括丙酮、乙酰乙酸和β-羟基丁酸)为脂......

迄今最大正常乳腺细胞图谱绘成

美国德克萨斯大学MD安德森癌症中心、加州大学尔湾分校和贝勒医学院的研究人员,历时7年,绘制出了迄今最大、最全面的正常乳腺细胞的图谱,为乳腺生物学提供了前所未有的见解,有助确定乳腺癌等疾病的治疗靶点。相......

试验表明一种改良的CART细胞有望治疗重症肌无力

来自一项小规模临床试验的证据表明,一种称为CAR-T细胞的先进血癌免疫疗法的改进形式经调整后可能能够用于治疗重症肌无力(myastheniagravis),即一种神经系统的自身免疫性疾病。这项临床试验......

一文读懂!细胞疗法的最新进展与挑战

基于细胞的治疗方案是目前医药研发的前沿领域,有望通过其独特的作用机制攻克一系列顽固疾病,拯救无数患者。近年来,细胞疗法在临床部署和制药市场的扩张中都经历了爆炸式增长,尤其是2017年诺华的替沙仑赛(t......

迄今最大最全人肺细胞图谱公布

迄今最大、最全面的人类肺细胞图谱8日发表在《自然·医学》杂志上。通过结合近40项研究的数据,一个国际研究团队创建了第一个完整的肺单细胞图谱,揭示了肺部细胞类型的丰富多样性,其突出了健康与患病肺部的关键......

迄今最大最全人肺细胞图谱公布

迄今最大、最全面的人类肺细胞图谱8日发表在《自然·医学》杂志上。通过结合近40项研究的数据,一个国际研究团队创建了第一个完整的肺单细胞图谱,揭示了肺部细胞类型的丰富多样性,其突出了健康与患病肺部的关键......