发布时间:2018-10-10 16:31 原文链接: HPLC基本维护故障诊断交流讲座

1.判断仪器脱气机是否正常:打开purge阀,流速设为2ml/min,然后提起过滤头,让体系进一些空气,再放下过滤头,看气泡是否会减少来判断脱气机是否起作用;

2. 溶剂过滤头不可超声清洗,可用35%硝酸浸泡1小时后再用溶剂清洗;

3. EDTA、乙二胺四乙酸等会对液相柱的不朽钢产生腐蚀;四氯化碳与2-异丙醇、四氢呋喃不可混合使用,但可单独使用;

4. 溶剂的使用:每两天更换或重新过滤溶剂(尤其是水,需要每天更换);流动相过滤是为了去除微生物,一般水要放在棕色瓶中;

5. 判断purge阀的滤芯是否需更换:用水作流动相时,流速为5ml/min时,正常泵压应为0bar(若打开purge阀时,泵压超过10bar时需更换滤芯);

6. 若用非极性溶剂作流动相,则需更换泵中起密封作用的“黑草帽”(适合反相的材料为石墨+聚四氟乙烯,而适合正相的为 ),而且必须一对同时更换,否则损坏更快;

7. 密封垫的冲洗:当流动相中盐的浓度>0.01M时,可减少密封垫的磨损;用1%异丙醇溶液冲洗活塞杆中析出的盐(加异丙醇是为了防止细菌生长),流速设为3-5滴/min;泵开着,洗盐装置也须开着;

8. 泵头不可用超声清洗(可用乙醇、水清洗)、宝石杆不可超声,石英窗可用超声清洗;

9. 缓冲盐的通道放在比例阀的下面,只有两相的话,只用一边(盐在下面,有机相在上面);

10.双元泵为泵后混合方式(为高压混合方式,不易进气泡),而四元泵为低压混合方式;

11.出口球型阀(outlet ball valve)可用超声清洗;

12.双元泵有一个筛网(sieve)可控制低流速;

13.流动相使用了缓冲盐,则必为反相柱(不可长时间用水冲),一般可冲20-30min,然后加入有机相(如甲醇),浓度逐步加大,直至100%甲醇;

14.反相和正相转换时,一般要做溶剂过渡(最佳为异丙醇),因为粘度大,流速不可设太大,不要超过 1ml/min(完全置换原来溶剂所需溶剂体积=体系体积(柱体积+1.5ml)×5);

15.比例阀内漏:抬起有嫌疑的通路,看管内流动相体积是否减少(抬起时同时打开purge阀);

16.泵压力不正常可能原因:气泡、主动阀故障、出口阀故障、密封垫或柱塞杆磨损,渗漏或堵塞、比例阀故障、传感器故障、使用比例阀混合时盐浓度太高;

17.自动进样:旁路状态、主路状态;手动进样:load状态至inject状态(最好满刻度进样,建议吸3倍以上进样体积),小体积进样则以小于1/2进样阀体积为佳;平时进样阀最好保持在inject状态(最右边状态);

18.进样流程:插针——inject状态——load状态——进样(缓慢)——inject状态——拔出针(进样阀后有两根废液管);

19.VWD(可变波长)检测器:检测器后out废液管不可太短,否则流通池容易进气泡,也不可太长,否则易压碎流通池;

20.DAD检测器(优势为优化条件方便):最大波长选择——要选择溶剂没有吸收的位置(避开约20nm);VWD检测器的灵敏度略高于DAD检测器;滤光片中钬玻璃用于校准波长;若要检测器的灵敏度提高则要开大狭缝(二极管阵列前狭缝默认为4nm);

21.DAD检测器的氘灯可用于VWD检测器,但反之则不行;钨灯、氙灯寿命长,可随开随用,但“氘灯需要预热(10几分钟)(寿命为1000小时),1-2小时不用,不用关,还是开着更好,氘灯放时间长容易衰变”,灯可进行测试;

22.测定条件设定:reference wave(流动相中溶剂的吸收)可以不设,梯度洗脱时参考波长要设,否则会导致基线漂移,DAD可选一个样品没吸收的波长作为参考光;band width(VWD设为光谱的半谱带宽度,而DAD检测器则不用设)(此范围内作色谱图可降低噪音,信噪比更好,但信号会降低);参考波长选择原则:样品没有吸收,但靠近样品最大吸收的位置;参考光波长带宽必须大于或等于测量光波长带宽;DAD选条件时要存所有光谱图(spectrum);氘灯(190-800nm),但有效范围为190-600nm,钨灯(470-950nm),若用470-800nm时两灯同开则强度加大;

23.基线噪音大原因:泵压不稳、有气泡、柱污染

24.清洗在线脱气机及比例阀(尤其是长期使用水相或缓冲盐的通路):先用水冲洗,再用甲醇冲洗,可以打开purge阀,使用5ml/min的流速,也可用IPA清洗:A、Buffer B、MeoH C、Water D、CH3CN 分析:A:B=20:

25.流动相pH>9.5或<2.3时,进样阀应更换tefzel转子密封,可耐受压:VWD(40bar),MWD(120bar), FLD(20bar), RID(56bar);RID,FLD永远是最后一个检测器


相关文章

高效液相色谱HPLC市场增长率4.6%2031年将达74亿美元

    2020年全球高效液相色谱(HPLC)市场规模约为45亿美元,预计到2025年将达57亿美元,预测期间的复合年增长率为4.6%。  ......

新进展!共价有机框架材料在毛细管电色谱中的应用

毛细管电色谱(CEC)因兼具高效液相色谱(HPLC)的高选择性和毛细管电泳(CE)的高分离效率而受到越来越多研究者的关注。在毛细管电色谱中,选择合适的固定相材料对获得优异的分离效果起着十分重要的作用。......

安捷伦与梅特勒托利多联手推进数字化转型

2023年7月12月,安捷伦科技公司宣布与梅特勒托利多达成合作,共同推出“HPLC样品自动称量解决方案”。双方将共同致力于解决实验室面临的一大困扰——错误的样品制备和称量过程而造成最终分析测试结果出现......

您喝对啤酒了么丨岛津LC同时检测啤酒中6种风味成分

夏天来了,怎少得了啤酒呢?啤酒作为全球第三大饮料,被称为“液体面包”,因其丰富的营养和独特的口感备受喜爱。啤酒中的香气物质包括来自啤酒花的黄腐酚和麦芽汁煮沸过程中生成的异黄腐酚,以及与苦味相关的葎草灵......

第51届HPLC国际会议(HPLC2023)在德杜塞尔多夫盛大召开

第51届高效液相分离及相关技术国际研讨会(HPLC2023)于2023年6月18日-22日星期日至星期四在德国杜塞尔多夫举行,来自全球46个国家和地区的1240位HPLC相关领域的研究者参加了这一盛会......

安捷伦在HPLC2023上推出全套GPC/SEC解决方案

整合PolymerStandardsService产品,构成市面上完整的通用GPC/SEC产品组合2023年6月20日,北京——安捷伦科技公司(纽约证交所:A)今日宣布在HPLC2023年度会议上展示......

变革近在咫尺—沃特世即将推出新款HPLC

您是否时常遇到这些挑战:1.成本增加2.人为错误3.批次失败4.监管力度加强今天的制药QC实验室面临着巨大的压力,既要设法做到事半功倍和缩短周转时间,还要努力满足越来越严格的监管要求。如果HPLC能够......

5分钟了解高效液相色谱前世今生和近期新品(中)

上篇我们介绍了商用高效液相色谱HPLC那些鲜为人知的发展历程,稍稍展望了一些未来趋势。接下来我们先了解一下市场情况,再概览下各主流厂家的液相发展简史,以及当家四大花旦的产品。全球HPLC市场概览202......

5分钟了解高效液相色谱前世今生和近期新品(上)

起源于上世纪60年代末的高效液相色谱(HPLC)技术,建立在经典液相色谱基础上,引入了气相色谱的理论,开始了高压泵、高效固定相、高灵敏度检测器各技术不断进步的旅程。解析真实世界的奥秘几乎都要用到分离技......

hplc压力波动过大?这么解决

当液相柱压不稳定时可以进行以下操作:1、检查是否脱气,压力不稳定很可能是管路中有气泡。2、更换密封垫,泵密封垫损坏,会把空气带进泵内。3、打开泵的排气阀,按purge健排气,或者以大流速(2ml/m)......