发布时间:2019-07-08 15:23 原文链接: Science:靶向神经酰胺双键可改善胰岛素抵抗和脂肪肝

  胰岛素抵抗和脂肪肝是糖尿病和心脏病的主要危险因素。在一项新的研究中,来自美国、巴西、澳大利亚和文莱的研究人员发现一种小的化学变化---改变两个氢原子的位置---使得健康的小鼠和具有胰岛素抵抗性和脂肪肝的小鼠之间存在差异。进行这种改变可以阻止摄入高脂肪饮食的小鼠出现这些症状,并且逆转肥胖小鼠中的前驱糖尿病(prediabetes)。相关研究结果于2019年7月4日在线发表于Science,论文题为“Targeting a ceramide double bond improves insulin resistance and hepatic steatosis”。

  这些研究人员通过让一种称为二氢神经酰胺去饱和酶1(dihydroceramide desaturase 1, DES1)的酶失活来改变代谢疾病的轨迹。这样做可阻止这种酶从称为神经酰胺的脂肪脂质中移除两个氢原子,因而具有降低体内神经酰胺总量的作用。DES1的作用是通常将一个保守的双键插入到神经酰胺和其他主要鞘脂类的主链中。

  这一发现突出了神经酰胺在代谢健康中的作用,并指出DES1是一种“可被药物靶向的”靶标,可能能够用于开发治疗前驱糖尿病、糖尿病和心脏病等代谢紊乱的新方法。

  论文通讯作者、美国犹他大学营养学与综合生理学主任Scott Summers博士说道,“我们鉴定出一种非常有效的潜在治疗策略,并且强调了复杂的生物系统如何受到化学上微小变化的深刻影响。”

  Summers说道,“我们的研究表明,神经酰胺在代谢健康方面具有重要作用。我们认为神经酰胺是下一个胆固醇。”

  这并不是Summers团队第一次发现降低神经酰胺可以逆转糖尿病和代谢疾病的迹象。然而,先前实验中使用的技术引起严重的副作用,这就表明它不适合于治疗应用。

  这一次,他们开发了一把精美的手术刀,而不是用大锤来解决这个问题。他们想知道在精确的时间和地点进行最小的改变是否可能会产生更好的结果。

  为了降低神经酰胺的水平,这些研究人员以两种方式阻止了神经酰胺合成的最后一步。 Summers团队对小鼠进行基因改造,使得编码DES1的基因可以在成年时期关闭,并且让这个基因在全身组织、肝细胞或脂肪细胞中失活。Kelley团队将短发夹RNA(shRNA)注入成体肝脏中,从而通过破坏RNA前体选择性地降低DES1的产生。

  这些研究人员首先让成年小鼠摄入高脂肪饮食(类似于饼干面团,含有大量的糖,脂肪含量是啮齿动物正常饮食中的6倍)来测试这种新方法。这些小鼠在三个月内体重增加了两倍。伴随肥胖而来的是它们的代谢健康遭受压力。它们出现了胰岛素抵抗和肝脏中脂肪堆积,这两者都是代谢疾病的迹象。

  在使用任一种技术降低神经酰胺后数周内,显著变化发生了。小鼠仍然肥胖,但是它们的代谢健康得到改善。脂肪从肝脏中清除,而且这些小鼠对胰岛素和葡萄糖都作出反应,就像健康的苗条小鼠一样。与之前的干预相反的是,在这项为期两个月的研究期间,这些小鼠都保持健康。当前,这些研究人员正在研究对健康的长期影响。

  Summers 说道,“它们的体重没有改变,但是它们处理营养物的方式确实发生变化。这些小鼠很胖,但它们很开心和很健康。”

  在另一项实验中,在让这些小鼠摄入高脂肪饮食之前降低神经酰胺水平可阻止体重增加和胰岛素抵抗。

  Summers说,虽然降低神经酰胺对人类的影响仍然未知,但有证据表明神经酰胺与代谢疾病有关。他指出,诊所已经开展了神经酰胺筛查试验,以衡量个人患心脏病的风险。

  Summers和Kelley正在开发抑制DES1的药物,目标是开发新的疗法。Kelley说道,“这个项目提供了大量的验证结果来表明这是一个谨慎而又高效的干预点。”

  如果神经酰胺导致健康状况不佳,那么我们为什么从一开始就使用它们?Summers团队通过测量这类脂质如何影响代谢来解决这个问题。他们发现神经酰胺激活了许多促进脂肪在细胞中储存的机制。它们还会削弱细胞使用葡萄糖作为燃料的能力。

  体现这些影响的证据包括分子途径Akt/PKB的激活,其中该分子途径抑制细胞合成糖并从血液中摄取它们的能力。与此同时,神经酰胺部分上通过让肝脏中的细胞增加脂肪酸储存和让脂肪组织减少脂肪燃烧,来减缓脂肪酸周转。

  Summers说,在短期内细胞在使用燃料方式上的转变是一个优势。这是因为神经酰胺在硬化细胞膜方面发挥着作用。此外,促进脂肪储存增加了神经酰胺的产生。这些数据表明神经酰胺的一个好处是它们可以保护细胞。当食物充足且细胞储存大量脂肪时,神经酰胺水平的增加会加强细胞的外膜,防止破裂。

  论文共同第一作者、Summers实验室研究生Trevor Tippetts解释道,“发挥这种作用通常是好事,但也可能是坏事。”此外,犹他大学研究助理教授Dr.Bhagirath Chaurasia、美国默克公司的Dr.Rafael Mayoral Moñibas和Dr.Jinqi Liu也是这篇论文的共同第一作者。

  Tippetts解释道,问题出现在长期过量的时候,比如在肥胖期间,神经酰胺持续保持较高的水平。Summers团队推测代谢稳态的持续受损会导致胰岛素抵抗和脂肪肝疾病。

  这些结果提示了神经酰胺的正常作用。Chaurasia说道,“我们认为神经酰胺已进化为一种营养传感器。”他说,当进入细胞中的脂肪数量超过它的能量需求和储存能力时,神经酰胺可作为一种信号,帮助身体加以应对。

  这些发现使得人们深入了解身体中的细胞如何评估营养状况并相应地进行调整。Chaurasia说道,“对我来说,这是非常令人兴奋的结果”。

  参考资料:

  Bhagirath Chaurasia et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science, 2019, doi:10.1126/science.aav3722.

相关文章

《科学》:揭示肝脏储存营养逻辑,助力脂肪肝防治

《科学》杂志刊发了中国医学科学院基础医学研究所黄波教授团队一项研究成果,揭示了肝细胞优先将葡萄糖转化为糖原以储存能量,并利用糖原合成过程的中间代谢产物分子UDPG抑制甘油三酯的合成。这一发现有望对当前......

硕士生一作!南方科技大学,发Science

2月2日,由南方科技大学材料科学与工程系讲席教授徐保民、研究助理教授章勇、前沿与交叉科学研究院研究教授王行柱团队在国际知名学术期刊Science发表了题为“Aqueoussynthesisofpero......

新型口服胰岛素可放入巧克力食用

挪威和澳大利亚的科学家开发出一种新型口服胰岛素,其可通过服用胶囊来摄入,甚至可放在巧克力中供人食用。相关论文发表于最新一期《自然·纳米技术》杂志。口服胰岛素将于2025年开展人体试验最新研究负责人之一......

JPM2024|雅培和Tandem合作,助力混合闭环糖尿病管理系统

2024年1月8日-11日,第42届摩根大通医疗健康峰会(J.P.MorganHealthcareConference,下称JPM大会)在美国旧金山召开。作为业内规模最大、信息最丰富的医疗健康投资研讨......

开门红,南方科技大学2024年首篇Science!

2024年1月4日,南方科技大学刘柳团队在Science在线发表题为“Astablerhodium-coordinatedcarbenewithaσ2π0electronicconfiguration......

美敦力泌力美公司对混合闭环胰岛素输注系统主动召回

美敦力(上海)管理有限公司报告,由于美国市场销售的序列号为NG3105252H和NG3401062H的两台胰岛素泵,患者无法将泵数据上传到CareLink软件的原因。生产商美敦力泌力美公司Medtro......

Science最新发布:全世界最前沿的125个科学问题!

此次发布的问题包括数学、化学、医学与健康、生命科学、天文学、物理学、信息科学、工程与材料科学、神经科学、生态学、能源科学与人工智能等领域。除了“物质的起源是什么”“黎曼猜想是真的吗”“地球上有多少物种......

第六篇Science,复旦上医团队系统描绘转录起始连续动态全过程

2023年12月22日,复旦上医徐彦辉团队在《科学》(Science)杂志上在线发表题为“Structuralvisualizationoftranscriptioninitiationinactio......

长效胰岛素实现血糖智能控制

注射胰岛素已经成为数以亿计的糖尿病患者日常生活中不可或缺的治疗方式。这除了给患者的日常生活带来了巨大负担,还有一旦胰岛素用量过多,便可能导致低血糖,给患者带来的安全风险。打入皮下的长效智能胰岛素制剂可......

解密胰岛素:揭示真相,避免防治误区

明明自己每天都在打胰岛素,为什么血糖还这么高呢?70岁的王大爷,患2型糖尿病已有10余年,院外长期接受胰岛素治疗,近日因急性脑梗住院治疗,入院查糖化血红蛋白高达12.7%,出现严重的糖尿病慢性并发症。......