发布时间:2019-08-13 09:27 原文链接: Autophagy(自噬)

自噬是近年来很热门的领域,搜了一下园子,发现没有这方面系统的介绍或讨论,但很多战友有这方面的疑问,加上本人最近对此也非常感兴趣,因此,借本版来专门讨论一下自噬(说实在的,自噬属于丁香园哪一个版块的范围我也选不好),与各位同行或有志于研究自噬的战友共同学习,也欢迎大家提出自己的看法,本人的目的就是交流。

自噬的过程:

步骤1:细胞接受自噬诱导信号后,在胞浆的某处形成一个小的类似“脂质体”样的膜结构,然后不断扩张,但它并不呈球形,而是扁平的,就像一个由2层脂双层组成的碗,可在电镜下观察到,被称为Phagophore,是自噬发生的铁证之一。

步骤2:Phagophore不断延伸,将胞浆中的任何成分,包括细胞器,全部揽入“碗”中,然后“收口”,成为密闭的球状的autophagosome,我把它翻译为“自噬体”。电镜下观察到自噬体是自噬发生的铁证之二。有2个特征:一是双层膜,二是内含胞浆成分,如线粒体、内质网碎片等。

步骤3:自噬体形成后,可与细胞内吞的吞噬泡、吞饮泡和内体融合(加了个“可”字,意思是这种情况不是必然要发生的)。

步骤4:自噬体与溶酶体融合形成autolysosome,期间自噬体的内膜被溶酶体酶降解,2者的内容物合为一体,自噬体中的“货物”也被降解,产物(氨基酸、脂肪酸等)被输送到胞浆中,供细胞重新利用,而残渣或被排出细胞外或滞留在胞浆中。

自噬的特性:

(1)自噬是细胞消化掉自身的一部分,即self-eating,初一看似乎对细胞不利。事实上,细胞正常情况下很少发生自噬,除非有诱发因素的存在。这些诱发因素很多,也是研究的热门。既有来自于细胞外的(如外界中的营养成分、缺血缺氧、生长因子的浓度等),也有细胞内的(代谢压力、衰老或破损的细胞器、折叠错误或聚集的蛋白质等)。由于这些因素的经常性存在,因此,细胞保持了一种很低的、基础的自噬活性以维持自稳。

(2)自噬过程很快,被诱导后8min即可观察到自噬体(autophagosome)形成,2h后自噬溶酶体(autolysosome)基本降解消失。这有利于细胞快速适应恶劣环境。

(3)自噬的可诱导特性:表现在2个方面,第一是自噬相关蛋白的快速合成,这是准备阶段。第二是自噬体的快速大量形成,这是执行阶段。

(4)批量降解:这是与蛋白酶体降解途径的显著区别

(5)“捕获”胞浆成分的非特异性:由于自噬的速度要快、量要大,因此特异性不是首先考虑的,这与自噬的应急特性是相适应的。

(6)自噬的保守性:由于自噬有利于细胞的存活,因此无论是物种间、还是各细胞类型之间(包括肿瘤细胞),自噬都普遍被保留下来(谁不喜欢留一手呢?)。

自噬相关基因(autophagy associated gene, ATG):在自噬过程中到底有哪些蛋白的参与,即自噬相关蛋白的鉴定是目前自噬研究主要的任务。由于自噬研究的历史关系,很多基因在酵母和哺乳动物中有不同的命名。

自噬过程的调控:

从上面总结的自噬特点中可以看出,自噬这一过程一旦启动,必须在度过危机后适时停止,否则,其非特异性捕获胞浆成分的特性将导致细胞发生不可逆的损伤。这也提醒我们在研究自噬时一定要动态观察,任何横断面的研究结果都不足以评价自噬的活性。

目前,已经报告了很多因素能诱导细胞发生自噬,如饥饿、生长因子缺乏、微生物感染、细胞器损伤、蛋白质折叠错误或聚集、DNA损伤、放疗、化疗等等,这么多刺激信号如何传递的、哪些自噬蛋白接受信号、又有哪些自噬蛋白去执行等很多问题都还在等待进一步解答中。

关于传递自噬信号的通路目前比较肯定的有:

抑制类

(1)Class I PI3K pathway (PI——phosphatidylinositol,磷脂酰肌醇)与IRS (Insulin receptor substrate) 结合,接受胰岛素受体传来的信号(血糖水平高抑制自噬)。

(2)mTOR在人类中的同源基因是FRAP1(FK506 binding protein 12-rapamycin associated protein 1),是一个丝/苏氨酸蛋白激酶。能接受多种上游信号,如Class I PI3K、IGF-1/2、MAPK,能感受营养和能量的变化。

激活类

(1)Class III PI3K
结构上类似于Class I PI3K,但作用相反。

接受上述信号的自噬蛋白:

目前都把焦点集中在beclin 1(酵母同源物为atg6),能与多种蛋白结合,如Vps34(Class III PI3K的催化亚单位),mTOR,BCL-2和BCLXL蛋白等,需注意的是,beclin-1是一个多功能蛋白,除了接受自噬信号,它还可以接受很多其它的信号对自噬进行调节,越来越多的证据表明,beclin-1可能是自噬的“守门人”。

自噬体的发生:

目前认为,自噬体的膜不是直接来源于高尔基体或内质网,而是在胞浆中重新生成的,但具体的机制尚不清楚。当beclin-1被活化后,胞浆中先形成很多个membrane source(自噬体膜发生中心),在它们不断扩展的过程中(phagophore到autolysosome),VMP1蛋白由内质网和高尔基体转位到自噬体膜上(VMP1又叫TMEM49,已知唯一与自噬有关的跨膜蛋白),同时,MAP1-LC3由胞浆型(即LC3-I)转位到自噬体膜(即LC3-II),LC3这一转变过程可被Western Blot和荧光显微镜检测到,现已成为监测自噬体形成的推荐方法。

自噬与细胞死亡的关系:

有必要说明一下的是,细胞死亡是一个非常复杂的过程,为了研究方便,需进行分类,但我们思考时不要局限于这些人为的分类,而应注重于现象本身来研究其背后的机制。

一直以来人们从不同角度、用不同方法来观察细胞的死亡,并把细胞的死亡方式分为2类:坏死和凋亡,因为两者有着明显的区别,其中最主要的区别之一就是细胞膜的通透性——坏死细胞的细胞膜丧失了完整性,内容物被释放出来,染料可自由进入细胞,而凋亡细胞保持完整,无内容物释放,染料也被排斥。很多实验亦根据这一原理来设计以区分坏死和凋亡,这将在后面一一介绍,如同刚刚说明的那样,这些实验只能说明细胞膜的通透性(必要条件,不是充分必要条件),而不能用来证实坏死细胞或凋亡细胞。

一般认为坏死是被动的,不可控的,而凋亡是主动的,可控的。为了强调这一点,凋亡被定义为程序性细胞死亡(program cell death,PCD)。但无论是坏死还是凋亡,都是一个过程,是需要时间的(尤其是凋亡,从启动到完成,细胞要执行很多反应),而且细胞死亡后都有“尸体”。

在研究自噬与凋亡的关系时,人们发现细胞死亡前胞浆中存在大量的自噬体或自噬溶酶体,但这样的细胞缺乏凋亡的典型特点,如核固缩(pyknosis), 核破裂(karyorhexis)、细胞皱缩(shrinkage)、没有凋亡小体的形成等,被称为自噬样细胞死亡(autophagic cell death,ACD),它是一种新的细胞程序性死亡,为了与凋亡区别,被命名为Type II cell death,相应的,凋亡为Type I cell death,坏死为Type III cell death。

尽管这样,但对于自噬是否是细胞死亡的直接原因目前还存在很大的争议。到底是Cell death by autophagy(自噬引起死亡)还是Cell death with autophagy(死亡时有自噬发生,但不是直接原因)?对此,自噬研究领域“大牛”级专家Levine Beth在一篇nature的Review中表达了自己的观点。由于在形态学上2者无明显区别,但通过阻断自噬,观察细胞的结局可区分开来:Cell death by autophagy细胞存活,而Cell death with autophagy细胞死亡。

自噬与肿瘤的关系:

与凋亡(在肿瘤细胞中一般都存在缺限)不同,自噬是被优先保留的。无论是肿瘤细胞还是正常细胞,保持一种基础、低水平的自噬活性是至关重要的。因为细胞中随时产生的“垃圾”(破损或衰老的细胞器、长寿命蛋白质、错误合成或折叠错误的蛋白质等等)都需要及时清除,而这主要靠自噬来完成,因此,自噬具有维持细胞自稳的功能;如果将自噬相关基因突变失活,如神经元会发生大量聚集蛋白,并出现神经元退化。

同时,自噬的产物,如氨基酸、脂肪酸等小分子物质又可为细胞提供一定的能量和合成底物,可以说,自噬就是一个“备用仓库”。如Atg-5缺陷的小鼠在出生后喝上第一口奶之前就会饿死。更重要的是,自噬活性可在代谢应激(饥饿、生长因子缺乏、射线、化疗等)时大大增强,表现为胞浆中迅速涌现大量自噬体,这一现象被称为“自噬潮”(autophagic flux),广泛用于自噬形成的监测。自噬潮为细胞度过危机提供了紧急的营养和能量支持,有利于细胞的存活。

鉴于自噬的上述作用,自噬可为肿瘤细胞带来几大好处:

(1)肿瘤细胞本身就具有高代谢的特点,对营养和能量的需求比正常细胞更高,但肿瘤微环境往往不能如意,如肿瘤发生初始期到血管发生之前、肿瘤长大发生血管崩塌时、肿瘤细胞脱离原发灶游走时等都会出现营养不足或供应中断,而此时提高自噬活性可以有助于度过这一危机。

(2)当化疗、放疗后,肿瘤细胞会产生大量的破损细胞器、损坏的蛋白质等有害成分,而此时提高自噬活性可及时清除这些有害物质,并提供应急的底物和能量为修复受损DNA赢得时间和条件。

由于自噬减少了肿瘤细胞在代谢应激时发生坏死的机会,而对于肿瘤细胞群体而言,需要一部分细胞发生坏死,以引发适度的炎症(有利于血管的长入、吸引免疫细胞分泌生长因子等)。研究发现,很多类型的肿瘤在代谢应激时会“组成性”活化PI3K信号以抑制自噬(由于凋亡通路已受阻,抑制自噬会促进坏死),但具体机制尚不清楚。

自噬的研究方法:

正常培养的细胞自噬活性很低,不适于观察,因此,必须对自噬进行人工干预和调节,经报道的工具药有:

(一)自噬诱导剂
1.  Bredeldin A / Thapsigargin / Tunicamycin :模拟内质网应激
2.  Carbamazepine/ L-690,330/ Lithium Chloride(氯化锂):IMPase 抑制剂(即Inositol monophosphatase,肌醇单磷酸酶)
3.  Earle's平衡盐溶液:制造饥饿
4.  N-Acetyl-D-sphingosine(C2-ceramide):Class I PI3K Pathway抑制剂
5.  Rapamycin:mTOR抑制剂
6.  Xestospongin B/C:IP3R阻滞剂

(二)自噬抑制剂
1.  3-Methyladenine(3-MA):(Class III PI3K) hVps34 抑制剂
2.  Bafilomycin A1:质子泵抑制剂
3.  Hydroxychloroquine(羟氯喹):Lysosomal lumen alkalizer(溶酶体腔碱化剂)

除了选用上述工具药外,一般还需结合遗传学技术对自噬相关基因进行干预:包括反义RNA干扰技术(Knockdown)、突变株筛选、外源基因导入等。


相关文章

内质网表面钙瞬变是多细胞生物自噬起始的关键信号

自噬是指通过形成双层膜结构的自噬体,包裹部分胞质并运送到溶酶体进行降解及回收的过程,对抵抗各种应激和维持细胞稳态至关重要。自噬异与老年痴呆等神经退行性疾病的发生发展密切相关。自噬体形成的关键步骤包括隔......

内质网表面钙瞬变是多细胞生物自噬起始的关键信号揭示

自噬是指通过形成双层膜结构的自噬体,包裹部分胞质并运送到溶酶体进行降解及回收的过程,对抵抗各种应激和维持细胞稳态至关重要。自噬异与老年痴呆等神经退行性疾病的发生发展密切相关。自噬体形成的关键步骤包括隔......

农夫与蛇:新冠病毒复制专坑宿主

自然界各类病毒多样,但目前新冠病毒在人类间广泛传播,造成如此大影响的需要高度重视,可能提示其感染宿主、自身复制、侵袭致病等机制与以往的机制区别。德国海德堡大学团队发现丙型肝炎病毒(HCV)和SARS-......

纳米机械力引发细胞自噬

机械力刺激在细胞生长、分化与通讯等重要生命活动中发挥关键作用。近年来,机械门控离子通道蛋白Piezo的发现为在分子水平理解机械力对于生物体的作用奠定了基础。然而,如何在单细胞水平定量分析机械力对于细胞......

应激诱导的分泌自噬通过增强MMP9的分泌促进细胞外成熟

过度或长时间的压力会对体内平衡造成威胁。为了适应压力,从遗传和表观遗传机制到分子通路的激活,几种策略最终导致生理和社会反应的改变。而压力适应的失败会导致过度的压力反应,而过度的压力反应反过来又会促进许......

揭示昆虫绿僵菌通过微自噬途径调控附着胞脂滴降解机制

6月16日,Autophagy在线发表了中国科学院分子植物科学卓越创新中心王成树研究组完成的研究论文Activationofmicrolipophagyduringearlyinfectionofin......

通过激活自噬促进结直肠癌的化疗抗性

细胞外细胞因子在肿瘤微环境中富集,调节癌症的各种重要特性,包括自噬。然而,自噬和细胞外细胞因子之间联系的精确分子机制仍有待阐明。2021年6月15日,华中科技大学王桂华及胡俊波共同通讯在NatureC......

癌症突变影响自噬选择性的作用机制

细胞自噬(Autophagy)是重要的生物学过程,通过形成双层膜结构的自噬体,将包裹在其中的胞质内容物投递到溶酶体中,从而降解损坏的细胞器、错误折叠的蛋白质、聚集体和病原体等。2016年日本著名生物学......

研究表明SAH可通过AHCYL1调控自噬等生物学过程

自噬是细胞应对营养缺乏的主要途径,同时也是MTOR信号通路调控的主要生物学过程之一。2017年,Sabatini课题组报道了BMT2/SAMTOR能够感知细胞内SAM(S-腺苷甲硫氨酸,S-adeno......

一文了解自噬阶段

自噬是一个吞噬自身细胞质蛋白或细胞器并使其包被进入囊泡,并与溶酶体融合形成自噬溶酶体,降解其所包裹的内容物的过程,借此实现细胞本身的代谢需要和某些细胞器的更新。自噬在机体的生理和病理过程中都能见到,其......