发布时间:2019-09-23 16:56 原文链接: 微流控技术在临床检测中的应用

微流控技术是一种对微尺度流体(微升到皮升量级)进行精确控制和操纵的技术。近二三十年来,得益于纳米制造技术的成熟与生化技术对操纵微量液体的需求,微流控技术取得了飞速的发展。与传统的检测方法相比,基于微流控平台的检测技术具有节省样本与试剂用量,反应速度更快,高通量,易便携,自动化潜力高等优势。


1998年Burns等提出的将多种生物、化学分析功能整合在一张微小芯片上的“芯片实验室”(lab-on-a-chip, LOC)的概念,展示了微流控技术应用于临床检测、精准医疗的美好前景。近年来,开发“芯片实验室”,又称“微型全分析系统”,已经发展为一个物理、微电子、材料、化学、生物、医学等多学科交叉的新型研究领域。本文主要介绍了微流控技术的分类、原理,以及其在临床核酸检测、免疫蛋白检测、药物筛查等方面的应用,以展示该技术在临床检测领域的应用前景及挑战。 


微流控的分类及原理


微流控技术有很多不同的细分领域。基于被操控的液体形态,微流控技术可简单分为连续流体微流控(continuous-flow microfluidics)和液滴微流控(droplet microfluidics)。基于液体移动的路径,微流控技术可分为通道微流控(channel-based microfluidics)和基于开放平台的微流控技术(open platform microfluidics)。


通道微流控通过在玻璃、硅片、高分子聚合物如聚二甲基矽氧烷(polydimethylsiloxane, PDMS)、聚甲基丙烯酸甲酯(polymethyl methacrylate, PMMA)等材料上构建微流通道,利用阀门、泵等部件控制液体流速。由于PDMS 价格便宜、制造方便、透明、具有较高的生物相容性,基于PDMS的微流控芯片获得了广泛的应用。


基于开放平台的微流控技术使得被操控的液滴不限于在通道中流动,比如基于电润湿现象(electrowetting on dielectric, EWOD)开发的数字微流控技术(digital microfluidics, DMF)。液体在介电表面的电润湿现象是指当液滴位于镀有一层疏水性介电层的平面电极阵列之上,对电极通电时,液滴与通电电极接触位置的接触角会变小,从而促使液滴移动。因此可以通过电路控制来操控微升到皮升量级的离散液滴进行移动、融合、分裂等动作。此外,除了加以电场驱动液滴,还有利用光敏材料的光驱动型、利用压电材料的力驱动型和表面声波驱动型等数字微流控技术。与传统的管道式微流技术相比,数字微流控技术无需泵、阀门等外接部件即可对离散液滴进行独立控制,也更容易与温控系统整合,更具有集成化、自动化的潜力。


此外,纸质微流控也属于基于开放平台的微流控技术,其原理是通过在纸基质上构建亲水通道来驱动液滴被动移动。由于纸基质成本与其它基质相比大为降低,纸质微流控技术也吸引了众多研究者的目光。


微流控在临床检测领域的应用及进展


微流控技术的发展促进了临床检测领域“即时检测”(point-of-care-testing, POCT)概念的诞生与发展。“即时检测”是指在照顾病人的当下即可使用的医学检测方法,其检测设备需要具有便携性、操作简单、检测速度快、结果准确可靠,可由 非专业检验人员甚至病人自己操作,可极大减轻专业医学检测人员的负担。目前微流控技术已在临床检测的多个方面如核酸检测、免疫测定、耐药性检测等获得应用。 


在核酸检测中的应用 


在对临床样本中的DNA或RNA进行分析之前,需要先将核酸分子从原始样本中提取、纯化。微流控芯片中最常用的核酸提纯方法是磁珠法。Sista等人在数字微流控芯片上利用磁珠法从人全血样本中成功提纯人基因组DNA,并用于后续的聚合酶链式反应(polymerase chain reaction, PCR)。在该系统中,血液样本在芯片上相继与裂解液、DNA捕获磁珠、清洗液、洗脱液结合。通过激活电极移动液滴,配合位于芯片底部的磁力装置,可实现不同液滴与磁珠的结合与分离,从而完成 DNA提纯过程。许多微流控芯片在提取核酸时,会通过加热来加速细胞裂解。鉴于对核酸进行后续分析通常需要控温装置,这种设计在不增加设备复杂度的同时可以提高核酸提取的效率。除了磁珠法、加热法等方法,一些微流控芯片利用介电泳效应(dielectrophoresis trapping)、等速电泳分离等微流控领域独有的技术来完成核酸分子的提纯。此外,为了满足第二代测序技术对于更高纯度核酸样本的需求,Choi等人利用惯性聚焦技术(inertial focusing),使全血、血浆样本中的巨细胞病毒颗粒在通过螺旋形的微流通道后与血细胞分离,降低了样本中人类基因的比例,减少了后续测序的背景噪音。


作为一种高特异性、高灵敏度、反应快速的核酸扩增手段,PCR在微流控领域的应用也得以充分开发。精确的温度控制系统是完成PCR的基本条件。基于温控的实现方法,可以简单地将微流控芯片上的PCR方法分为2类:静止PCR和动态PCR。在静止PCR方法中,反应液在PCR过程中位置不变,通过对固定反应点的升降温来实现热循环。如Chang等人利用金属铂作为加热元件和感温元件对固定的PCR反应位点进行温控,成功在数字微流控芯片上扩增出二型登革病毒核酸。在动态PCR方法中,反应液在几个具有特定温度的恒温域之间受控地来回移动,以此实现反应液的热循环。Sista等人开发的用于PCR的微流控芯片具有一个60℃恒温域和一个95℃恒温域,反应液在2个恒温域之间移动,18 min即可完成40个循环的PCR反应。PCR与微流控技术的结合还突破了传统PCR方法反应速度的极限。对于液滴微流控来说,微小液滴具有的高表面积与体积比使得热量传导更快、更均一,可极大加速PCR反应进程。Wheeler等人从反应热动力学、DNA聚合酶等角度探索了在微流控芯片上进行超快速PCR的极限,利用适合于进行快速PCR的SpeedSTAR HS DNA聚合酶或KAPA2G DNA聚合酶,并减少在变性、退火、延伸各步骤的停留时间,在3 min以内完成了35个循环的PCR扩增反应。陈天蓝等人设计的数字微流控芯片用鉻电极作为温控系统,可以使液滴超快速升降温,在7 s之内完成对SYBR和特异性分子信标探针的溶解曲线分析。与传统的PCR设备相比,不丧失灵敏度的前提下,在大部分微流控芯片上进行PCR可以至少减少50%的反应时间和70%的样本消耗。


除了与PCR技术结合,各种基于微流控芯片的等温核酸扩增技术也得以开发。虽然在灵敏度和特异性方面与PCR有差别,但由于等温扩增技术对温度的精准控制要求较低,开发者更容易将相应设备小型化、便携化。万谅等人开发的便携式微流控设备,可在不到一个鞋盒大小的数字微流控平台上实现对布鲁氏菌基因的环介导等温扩增(loop mediated isothermal amplification, LAMP)及检测。在67℃ 40 min的扩增反应之后,通过对分子信标探针的熔解曲线分析,不到5 min即可完成对目的基因的检测。Laili等人开发的微流控核酸检测芯片则结合了滚环扩增技术(rolling circle replication, RCA)和微流电泳技术,在37℃ 60 min的RCA扩增反应后,可通过在微流通道中进行电泳分离来检测样本中是否含有霍乱弧菌的目的基因。 


鉴于微流控领域反应液的微小体积,更需要高灵敏度的检测方法来检测样本中的核酸分子。目前微流控芯片上开发的实时PCR方法最常用的是荧光检测法,通过SYBR等非特异性嵌入式染料或者Taqman探针、分子信标探针等特异性荧光探针来检测目的基因。小型发光二极管可被整合到微流控系统中,代替较大的汞灯、水银灯等作为激发光源。除了实时PCR,研究者们在各种微流控平台上整合了核酸杂交技术、毛细管电泳技术、焦磷酸测序技术、DNA光学图谱技术等核酸分析方法,作为核酸扩增产物的后续检测分析方法。 


在免疫分析中的应用 


基于抗原抗体之间特异性结合的免疫分析法是临床诊断领域最常用的检测方法之一。传统的免疫分析方法,如酶联免疫吸附法(enzyme linked immunosorbent assay, ELISA),具有成本低,易操作的优点,但耗时长、费人力、需要额外设备如酶标仪等特性也阻碍了其应用于即时检测。基于微流控平台的免疫分析方法,可以促进抗原抗体之间的吸附,减少反应时间,实现自动控制,整合小型光学探头使设备小型化,实现即时检测的目标。