发布时间:2019-10-14 16:43 原文链接: 浅谈原子吸收光谱和ICP光谱

原子吸收光谱法和原子发射光谱法都属于原子光谱分析技术。不同之处在于原子发射光谱分析技术是通过测量被测元素的发射谱线的波长与强度进行定性与定量分析的一种原子光谱技术;而原子吸收光谱则是依据被测元素对锐线光源的吸收程度进行定量分析的一种原子光谱技术。下面对两种技术简单进行分别介绍。

 

第一部分  原子吸收光谱法

原子吸收光谱法(atomic absorption spectrometry AAS),也称作原子吸收分光光度法(atomic absorption spectrophotometryAAS),是基于蒸气相中待测元素的基态原子对其共振辐射的吸收强度来测定试样中该元素含量的一种仪器分析方法。

 

一、原子吸收光谱分析的特点及其应用

1、原子吸收光谱法的特点

原子吸收光谱分析法的优点是:

1)检出限低,灵敏度高。火焰原子吸收法的检出限可达10-9gppm级),石墨炉原子吸收法更高,可达ppb级。

2)测量精度好。火焰原子吸收法测定中等和高含量元素的相对偏差可小于1%,测量精度已接近于经典化学方法。石墨炉原子吸收法的测量精度一般为3-5%

3)选择性强,简便、快速。由于其采用銳线光源,样品不需要经繁琐的分离,可在同一溶液中直接测定多种元素,测定一个元素只需要数分钟,分析操作简便、迅速。

4)抗干扰能力强。原子吸收线数目少,光谱干扰少,一般不存在共存元素的光谱重叠干扰。

5)应用范围广。可测60多种元素;既能用于微量分析又能用于超微量分析。另外,还可用间接的方法测定非金属元素和有机化合物。

6)用样量少。火焰原子吸收光谱测定的进样量为3~6mL·min-1,采用微量进样时可少至10~50μL。石墨炉原子吸收光谱测定的液体进样为10~20μL,固体进样量为毫克量级,需要的样品量极少。

7)仪器设备相对比较简单,操作简便,易于掌握。

 

2、原子吸收光谱分析法的应用

原子吸收光谱分析法主要用于金属元素的测定,已广泛应用于矿物、金属、陶瓷、水泥、化工产品、土壤、食品、血液、生物体、环境污染物等试样中的金属元素的测定中。

此外,利用间接原子吸收光谱法还可以进行一些非金属元素等的测定。如共振吸收线位于短波紫外区的元素,如FClBrISPNAsSeHg等;用直接原子吸收光谱法测定灵敏度很低的难熔高温元素,如BBeZrFNbTaWUTh以及稀土元素等以及不能直接测定的阴离子和有机化合物。

采用原子吸收光谱分析法还可以测定元素形态,主要通过化学法、氢化物发生法和色谱-原子吸收光谱联用法实现。

二、原子吸收光谱法的基本原理

从光源发射出具有待测元素特征谱线的光,通过试样蒸气时,被蒸气中待测元素的基态原子所吸收,吸收程度与被测元素的含量成正比。所以,可以根据测得的吸光度求得试样中被测元素的含量。

三、原子吸收光谱仪的基本构造

原子吸收分光光度计分为单光束型和双光束型。其结构可分为五个部分:光源、原子化器、光学系统、检测系统与数据处理系统。

3.1光源

为测出待测元素的峰值吸收,须采用锐线光源,应满足以下一些要求:辐射强度大、辐射稳定、发射普线宽度窄。空心阴极灯是目前原子吸收光谱仪器使用的主光源,属于辉光放电气体光源。

空心阴极灯是一种由被测元素或含有被测元素的材料制成的圆筒形空心阴极和一个阳极(钨、钛或锆棒),密封在充有低压惰性气体的带有石英窗的玻璃壳内的电真空器件。

当在两极之间施加几百伏的高压,两极之间会产生放电,电子将从空心阴极内壁射向阳极,并在电子的通路上又与惰性气体原子发生碰撞并使之电离,带正电荷的惰性气体离子在电场的作用下,向阴极内壁猛烈地轰击,使阴极表面的金属原子溅射出来,而这些溅射出来的金属原子再与电子、惰性气体原子及离子发生碰撞并被激发,于是阴极内的辉光便出现了阴极物质的光谱。

空心阴极灯的阴极材料的纯度必须很高,内充气体也必须为高纯,以保证阴极元素的共振线附近不含内充气体或杂质元素的强谱线。

空心阴极灯的操作参数是灯电流,灯电流的大小可决定其所发射的谱线的强度。但是需根据具体操作情况来选择灯电流的大小。

通常情况下,空心阴极灯在使用前需预热10~15min

3.2 原子化系统

原子吸收光谱中常用的原子化技术是:火焰原子化和电热原子化。此外还有一些特殊的原子化技术如氢化发生法、冷原子蒸气原子化等。

3.2.1火焰原子化系统——火焰原子化器

火焰原子化器由雾化器、雾化室、燃烧器三部分组成。常见的燃烧器有全消耗型和预混合型。目前主要使用的是预混合型燃烧器。

3.2.2 电热原子化系统——石墨炉原子化器

非火焰原子化器中适用最广的是管式石墨炉原子化器。组成部分为:石墨管、炉体、电源。样品直接放置在管壁上或放置在嵌入管内的石墨平台上,用电加热至高温实现原子化。

3.3光学系统

光学系统为光谱仪的心脏,一般由外光路与单色器组成。

外光路可以分为单光束与双光束。单光束系统中,来自光源的光只穿过原子化器,它的优点,能量损失小,灵敏度高,但不能克服由于光源的不稳定而引起的基线漂移。

传统双光束系统采用斩光器将来自光源的光分为样品光束与参比光束,补偿了基线漂移,但能量损失大。

单色器置于原子化器之后,这样可将空心阴极灯阴极材料的杂质发出的谱线、惰性气体发出的谱线以及分析线的邻近线等与共振吸收线分开并防止光电管疲劳。

由于锐线光源的谱线简单,故对单色器的色散率要求不高(线色散率为10-30Å/mm)

 

3.4 检测系统与数据处理系统

检测系统包括检测器、放大器、对数转换器及显示装置等。光电倍增管是原子吸收光谱仪的主要检测器,要求在180-900nm测定波长内具有较高的灵敏度,并且暗电流小。目前通过计算机软件控制的原子吸收光谱仪具有很强的数据处理能力。

 

四、原子吸收光谱法分析的实验技术

4.1 试样用量以及进样形式的控制

原子吸收光谱分析本质上是一种微量元素或痕量元素的测定技术,无论是火焰原子吸收还是石墨炉原子吸收分析,对于含量或浓度高的样品都必须进行稀释。原子吸收光谱最适宜的测量范围,固体样品在千分之几至十万分之几之间。

对于试样的形式通常首选溶液进样分析技术。所以样品的前处理相当重要。涉及到萃取、消解等前处理技术。而非溶液进样则应用于石墨炉原子吸收光谱分析。

4.2 相对测量技术

原子吸收光谱分析是一种相对测量技术,要测得一个未知样品的准确含量,必须同时满足三个条件:1、用合适的标准品对仪器进行定标,即作出一条校准曲线;2、标准品和样品必须是同一台仪器进行测定;3、标准品和样品的测试条件应大致保持一致。

4.3 实验条件选择

4.3.1光谱通带

选择原则:能将吸收线与邻近的干扰线分开

一般元素通带在0.4~4nm之间,谱线复杂的元素,如FeCoNi等选小于0.1nm的通带。

4.3.2灯电流

通常是额定电流的1/2~2/3。这样可使多普勒变宽减至最小,消除自吸,提高灵敏度,改善校正曲线的线性。

4.3.3火焰位置以及条件

位置:光源发出的光束通过火焰中自由原子浓度最大的位置,即在吸收值最大处固定燃烧器的位置。

火焰条件按实验具体情况选定。

4.3.4分析线的选择

为了获得最高灵敏度,通常选用共振线作为分析线。对于共振线在远紫外区的元素,受火焰气体和大气的干扰强烈,测定时选用合适的非共振线作为分析线。

 

五、定量依据

在原子蒸汽激发态原子和基态原子,两中状态的原子数之比在一定的温度下是一个相对确定的值,它们的比例关系可用玻尔兹曼(Boltzmann)方程式来表示:

Nj/N0=(Pj/P0)e-(Ej-E0)/ kT

式中:NjN0 分别为激发态和基态原子数;Pj P0分别为激发态和基态能级的统计权重;k为玻尔兹曼常数;T为热力学温度。

从波尔兹曼分布可以看出,在原子化器中,N0及态原子数远比激发态原子数NJ大,所以通常情况下可以忽略激发态原子和元素电离的影响,可以用N0代替吸收发射线的原子总数。

原子吸收光谱分析测量的是吸收信号,是同一束光的强度变化。原子吸收光谱分析和其他的吸收光谱仪器一样,在测量中服从朗伯-比尔定律,即:

lg1/T=lgI0/IT= abc

lg1/T=lgI0/IT= A

A——测得的吸光度

T——光经过吸收池的透光率

I0——通过吸收池的初始光强度

IT——透过吸收池,未被吸收的光强度

a——与吸收系数有关的常数

b——吸收池长度

c——被测元素的原子在吸收池中的浓度

在原子吸收光谱分析中,吸收池(燃烧器缝和石墨管)的长度是一定的,被测元素的特定分析谱线的吸收系数也是一定的,因而仪器测得的吸光度就与吸收池(原子化器)中的目标元素原子的浓度成正比。即:

A= kc

式中k是与实验条件有关的常数。该式即为原子吸收光谱法的定量依据。

 

5.1 原子吸收光谱法中常用的定量方法

1标准曲线法

标准曲线法是用标准物质配制一系列已知浓度的标准试样,在标准条件下,测得每一浓度对应的吸光度值,以吸光度对浓度作图,绘制标准曲线。在相同条件下测定样品吸光度,从标准曲线上读取样品浓度。

优点:适用范围广,快速简便,适合大批量样品的测定。

不足:实验准确度受基体干扰严重。

2)标准加入法

标准加入法是在数个等分的试样中分别加入呈比例的标准试样,然后稀释到一定体积。根据测定的吸光度值,绘制吸光度A-c(浓度)曲线。用外推法求得稀释后试样中待测物的浓度。

优点:可以减小或消除基体效应的干扰,提高测定准确度。

不足:工作量大

3内标法

内标法是在试样各含量不同的一系列标准试样中,分别加入固定量的纯物质,即内标物。在标准条件下测定分析元素和内标元素的吸光度比,以此比值对浓度作图,绘制标准曲线,在同样条件下,测定试样中被测元素和内标元素的吸光度比值,在从标准曲线上读取对应的浓度。

优点:可以减少实验条件按变动引起的随机误差,提高精密度。

不足:必须使用双通道原子吸收光谱仪,使用上受到限制。

 

六、干扰及其消除或抑制方法

原子吸收分析中常常遇到的干扰有物理干扰和化学干扰。其次是光谱干扰和电离干扰。

6.1 物理干扰

物理干扰是指试样在转移、蒸发和原子化过程中,由于试样任何物理性质的变化而引起的原子吸收信号强度变化的效应。物理干扰属非选择性干扰。

为消除物理干扰保证分析的准确度一般采用以下方法

a配制与待测试液基体相一致的标准溶液,这是最常用的方法。

b 当配制与待测试液基体相一致的标准溶液有困难时,需采用标准加入法。

c 当被测元素在试液中浓度较高时,可以用稀释溶液的方法来降低或消除物理干扰。

6.2 化学干扰

化学干扰是一种由待测元素与其它组分之间的化学作用所引起的干扰效应,此效应主要影响待测元素化合物的熔融、蒸发和解离过程。化学干扰是一种选择性干扰,它不仅取决于待测元素与共存元素的性质,还和火焰类型、火焰温度、火焰状态、观察部位等因素有关。

化学干扰的形式有两种,一是待测元素与共存元素作用生成难挥发的化合物,致使参与吸收的基态原子数目减少。消除办法:提高火焰温度或加入释放剂和保护剂。常用的释放剂有氯化镧和氯化锶等

二是基态原子的电离。消除办法:在标准溶液中同时加入大量的易电离元素,增加火焰中自由电子浓度,将分析元素的电离效应抑制到最小