发布时间:2019-12-30 14:35 原文链接: 科学家成功从结构上揭示牛痘病毒增殖机制

  为了让病毒增殖,它们通常需要被感染细胞的支持。在许多情况下,在感染附近的其他细胞之前,只有在宿主细胞的细胞核中才能找到它们复制它们自己的遗传物质所需的分子。但是并非所有病毒都能进入细胞核中。一些病毒停留在细胞质中,因此必须能够独立地复制它们的遗传物质。为此,它们必须带上它们自己的“加工零件”。在这个过程中起关键作用是一种由各种亚基组成的特殊酶---RNA聚合酶---完成的。这种酶从病毒基因组中读取遗传信息,并将它转录为信使RNA(mRNA),并利用mRNA作为基因组中编码蛋白的蓝图。

图片来自Cell, 2019, doi:10.1016/j.cell.2019.11.024。

  在两项新的研究中,来自德国维尔茨堡大学生物中心和马克斯普朗克生物物理化学研究所的研究人员如今首次成功过地在原子分辨率下解析出牛痘病毒RNA聚合酶(Vaccinia RNA polymerase, vRNAP)的三维结构。牛痘病毒属于痘病毒家族,对人类无害,并构成所有天花疫苗的基础。由于它的良好特性,它当前用于溶瘤病毒疗法的测试中,其中溶瘤病毒疗法是一种抵抗癌症的新策略。相关研究结果近期发表在Cell期刊上,论文标题分别为“Structural Basis of Poxvirus Transcription: Vaccinia RNA Polymerase Complexes”和“Structural Basis of Poxvirus Transcription: Transcribing and Capping Vaccinia Complexes”。这两篇论文的通讯作者为维尔茨堡大学的Utz Fischer博士和马克斯普朗克生物物理化学研究所的Patrick Cramer博士。

  将所有东西夹在一起的分子钳(molecular clamp)

  Fischer解释说,“vRNAP基本上以两种形式存在:核心vRNAP和更大的完整vRNAP。这种完整vRNAP具有各种额外的亚基,因而具有特殊的功能。”这种核心vRNAP在很大程度上类似于另一种已知的酶:细胞RNA聚合酶II,它长期以来也一直是Cramer实验室的研究重点。这是在细胞核中发现的,在那里它读取基因组上的信息并将其转录成mRNA。 Fischer将这种完整vRNAP称为‘全能者’。它由许多亚基组成,可以完成病毒的整个转录过程,从而使得这种病原体的增殖迈出了重要的一步。

  这种完整vRNAP由这种病毒从它的宿主细胞中借出的一种称为转移RNA(tRNA)的分子结合在一起。这类分子通常在转录中不起作用,但为蛋白产生提供了氨基酸构成单元(building block)。维尔茨堡大学结构生物学家Clemens Grimm说:“如果没有宿主tRNA的参与,这种庞大的具有所有特定亚基的分子机器就会瓦解。”Grimm与马克斯普朗克生物物理化学研究所的Hauke Hillen一起执行结构分析。

  这些研究人员猜测宿主tRNA分子除了具有连接功能外,还执行了另一项重要任务。维尔茨堡大学癌症治疗研究中心的Aladar Szalay解释道,“这种tRNA仅能够装载谷氨酰胺。谷氨酰胺不仅是蛋白产生所必需的氨基酸,而且也是细胞的重要能量和氮源。”鉴于这种病毒的复制依赖于氮,因此tRNA可以充当传感器,为这种病毒提供有关宿主细胞中当前氮含量的信息。如果氮水平降至一定值以下,那么这可能是这种病毒尽快离开宿主的信号。但是,到目前为止,这只是一种猜测。

  为了了解这种病毒RNA聚合酶的工作原理,这些研究人员还确定了它在不同转录步骤中的三维结构。有了这些新发现,如今就可以从结构角度了解病毒增殖的整个过程。就像在电影中一样,可以追踪这种分子机器在原子水平上发挥功能以及各个过程是如何编排在一起的。 Hillen解释说,“令人惊奇的是,这种分子机器的构成单元在转录开始后如何自我重新排列来驱动RNA产物的合成---这种复合物确实是极其动态变化的。”为了获得这种新的见解,生物化学家和结构生物学家必须紧密合作:维尔茨堡大学的生物化学家Julia Bartuli和Kristina Bedenk在长达一年的过程中对这种具有所有相互作用组分的聚合酶复合物进行了纯化并描述了它的生物化学特性。结构生物学家Grimm和Hillen随后负责确定它的三维结构。

  超级显微镜提供必要的数据

  这些研究人员从近年来彻底改变了结构分析的装置---最新一代的低温电子显微镜---中获得了数据。在30万伏特的电压下,它可通过向冷却至-180℃的样品发射电子,从而提供原子分辨率下的图片。这种低温电子显微镜使得研究生物分子和复合物以及重建它们的三维结构成为可能。

  在大约六个月的时间里,Grimm和Hillen不得不使用计算机,直到他们从数TB的数据中获得了这种聚合酶复合物的空间模型。有了三维镜片,每个人如今都可以在空间上可视化观察这种复合物,将它任意旋转并将它分解为它的亚基。

  除其他方面外,这些新发现如今使得开发抑制剂和调节剂来影响病毒增殖周期成为可能。鉴于牛痘病毒复制发生在细胞质中,因此这些研究人员还希望它具有治疗潜力。当前,全世界都在进行牛痘病毒用于抗癌的研究。Genelux公司已经在动物实验和患者中证实了经过特殊优化的牛痘病毒在缩小肿瘤和检测最小转移灶方面的潜力。此外,这些研究人员期待对相关的非病毒RNA聚合酶复合物的功能有新的令人兴奋的见解。


相关文章

细菌如何识别病毒入侵并激活免疫防御?本文揭晓答案

地球上没有任何一种生物的生命是不受威胁——包括细菌。被称为噬菌体的掠食性病毒是它们最可怕的敌人之一,它们渗透到细胞中进行复制并接管。细菌已经进化出了一系列对抗这些感染的策略,但它们是如何首先发现入侵者......

得了支原体肺炎需要输液、“洗肺”吗?专家解答来啦!

近期,儿童支原体肺炎广受关注。患儿什么时候具有传染性?是否需要输液、“洗肺”?担心医院人多能否自行用药?记者在11月12日世界肺炎日到来之际,采访了相关医学专家。“感染肺炎支原体后,在开始发烧前有几天......

“假病毒”识别技术被开发,在病毒研究方面开辟了全新的视野

假病毒类似于冒名顶替者:虽然它们是无害的,但它们的设计方式使人很难将它们与危险的同类区分开来。这使它们成为病毒研究的宝贵工具。它们可用于精确分析危险病毒变体的感染途径。到目前为止,该研究领域的一个主要......

Nature:以彼之道,还施彼身!揭开病毒对抗细菌CRISPR免疫系统的全新方式

噬菌体(Phage)和其他可移动遗传元件(MGE)对细菌施加了巨大的选择压力,作为回应,细菌也发展出了广泛的防御机制。其中最我们熟知的就是——CRISPR-Cas系统,这是一组在细菌中广泛存在的RNA......

Cell:我国科学家在几种小型哺乳动物物种中发现病毒跨物种传播

在一项新的研究中,来自中国复旦大学、龙泉市疾病预防控制中心、武汉市疾病预防控制中心和温州市疾病预防控制中心等研究机构的研究人员探究了毛茸茸的小型病毒载体如何影响病毒的传播和进化。他们报告了669种病毒......

我国冷冻电镜再发Nature三维结构解析免疫机制

10月2日,《自然》杂志在线发表了我国科学家的一项关于免疫系统如何发挥作用的重要成果。通过海量的实验与计算,来自中国科学院物理所、中国医学科学院等单位的研究人员,成功解析与原核短Ago系统相关的高分辨......

复旦大学最新Cell

蝙蝠、啮齿动物和鼩鼱是人类传染病最重要的动物来源。然而,病毒在它们之间的进化和传播在很大程度上仍未被探索。2023年9月20日,复旦大学张永振团队在Cell在线发表题为“Hosttraitsshape......

病毒ADP核糖转移酶将RNA与宿主蛋白偶联在一起

在此之前,人们一直认为RNA和蛋白只是在细胞过程中发生短暂的相互作用。在一项新的研究中,来自德国马克斯-普朗克陆地微生物研究所的研究人员发现,事实并非如此:细菌病毒---也称为噬菌体---在发育周期中......

武汉病毒所:邓增钦团队非洲猪瘟病毒药物靶点研究新进展

近日,中国科学院武汉病毒研究所抗病毒研究中心邓增钦团队在非洲猪瘟病毒拓扑异构酶的结构解析和催化机制研究中取得进展。相关研究成果以Cryo-EMstructuresofAfricanswinefever......

单次注射基因疗法能清除艾滋病病毒

美国坦普尔大学刘易斯·卡茨医学院的科学家17日报告称,基于CRISPR-Cas9基因编辑技术EBT-001可以安全有效地将SIV(猴免疫缺陷病毒)从非人灵长类动物的基因组中去除。这项临床前研究是推动人......