发布时间:2020-04-08 11:49 原文链接: 叶绿素知识与叶绿素荧光测定的原理(下)

1864年,德国科学家萨克斯做了这样一个实验:把绿色叶片放在暗处几小时,目的是让叶片中的营养物质消耗掉。然后把这个叶片一半曝光,另一半遮光。过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。这一实验成功地证明了绿色叶片在光合作用中产生了淀粉。

1880年,德国科学家恩吉尔曼用水绵进行了光合作用的实验:把载有水绵和好氧细菌的临时装片放在没有空气并且是黑暗的环境里,然后用极细的光束照射水绵。通过显微镜观察发现,好氧细菌只集中在叶绿体被光束照射到的部位附近;如果上述临时装片完全暴露在光下,好氧细菌则集中在叶绿体所有受光部位的周围。恩吉尔曼的实验证明:氧是由叶绿体释放出来的,叶绿体是绿色植物进行光合作用的场所。 

将一片脱去淀粉的紫罗兰叶片放在阳光下数小时之后用碘试剂检测,可以发现只有叶片上绿色的区域变色而白色区域没有,也就是说只有绿色区域有淀粉存在。这显示了光合作用在缺乏叶绿素的情况下无法进行,叶绿素存在是光合作用的必要条件。

叶绿素 - 荧光现象和磷光现象

叶绿素的可见光波段的吸收光谱,在蓝光和红光处各有一显著的吸收峰。吸收峰的位置和消光值的大小随叶绿素种类不同而有所不同。叶绿素a最大的吸收光的波长420-663nm,叶绿素b 的最大吸收波长范围在460-645nm。当叶绿素分子位于叶绿体膜上时,由于叶绿素与膜蛋白的相互作用,会使光吸收的特性稍有改变。(手持式叶绿素测定仪)

叶绿素的酒精溶液在透射光下为翠绿色,而在反射光下为棕红色。这个红光就是叶绿素受光激发后发射的荧光。这个现象就是荧光现象。其主要原理是由于叶绿素有两个不同的吸收峰。叶绿素吸收光的能力极强,如果把叶绿素的丙酮提取液放在光源与分光镜之间,可以看到光谱中有些波长的光被吸收了。因此,在光谱上就出现了黑线或暗带,这种光谱叫吸收光谱。叶绿素吸收光谱的最强区域有两个:一个是在波长为640nm-660nm的红光部分,另一个在波长为430nm-450nm的蓝紫光部分。对其他光吸收较少,其中对绿光吸收最少,由于叶绿素吸收绿光最少,所以叶绿素的溶液呈绿色。叶绿素的丙酮提取液在透射光下是翠绿色的,而在反射光下是综红色的。 叶绿素溶液的荧光可达吸收光的10%左右。而鲜叶的荧光程度较低,指占其吸收光的0.1%-1%左右。

荧光效应在植物生理学中有广泛的应用。用这个效应可以研究植物的抗逆生理。因为在逆境下,植物的叶绿素会发生变换,研究其荧光,可以作为植物受逆境胁迫程度的指标。另外,还有一个磷光效应。就是当荧光出现后,立即中断光源,用灵敏的光学仪器还可在短时间内看到微弱红光,这就是磷光。(Chlorotech121A手持式叶绿素荧光测定仪)

叶绿素 - 生物合成与代谢

叶绿素a的生物合成途径,是由琥珀酰辅酶A和甘氨酸缩合成δ-氨基乙酰丙酸,两个δ-氨基乙酰丙酸缩合成吡咯衍生物胆色素原,然后再由4个胆色素原聚合成一个卟啉环──原卟啉Ⅳ,原卟啉Ⅳ是形成叶绿素和亚铁血红素的共同前体,与亚铁结合就成亚铁血红素,与镁结合就成镁原卟啉。镁原卟啉再接受一个甲基,经环化后成为具有第Ⅴ环的原脱植醇基叶绿素,后者经光还原、酯化等步骤而形成叶绿素a。

叶绿素在活体内也和其他物质一样处于不断更新状态。它被叶绿素酶分解,或经光氧化而漂白。深秋时许多树种叶片呈美丽的红色,就是因为这时叶绿素降解速度大于合成速度,含量下降,原来被叶绿素所掩盖的类胡萝卜素、花色素的颜色显示出来的缘故。

在植物衰老和储藏过程中,酶能引起叶绿素的分解破坏。这种酶促变化可分为直接作用和间接作用两类。直接以叶绿素为底物的只有叶绿素酶,催化叶绿素中植醇酯键水解而产生脱植醇叶绿素。脱镁叶绿素也是它的底物,产物是水溶性的脱镁脱植叶绿素,它是橄榄绿色的。叶绿素酶的最适温度为60-82℃,100℃时完全失活。起间接作用的有蛋白酶、酯酶、脂氧合酶、过氧化物酶、果胶酯酶等。蛋白酶和酯酶通过分解叶绿素蛋白质复合体,使叶绿素失去保护而更易遭到破坏。脂氧合酶和过氧化物酶可催化相应的底物氧化,其间产生的物质会引起叶绿素的氧化分解。果胶酯酶的作用是将果胶水解为果胶酸,从而提高了质子浓度,使叶绿素脱镁而被破坏。

在活体绿色植物中,叶绿素既可发挥光合作用,又不会发生光分解。但在加工储藏过程中,叶绿素经常会受到光和氧气作用,被光解为一系列小分子物质而褪色。光解产物是乳酸、柠檬酸、琥珀酸、马来酸以及少量丙氨酸。因此,正确选择包装材料和方法以及适当使用抗氧化剂,以防止光氧化褪色。

叶绿素提取的准备工作是在一个半暗的房间里,室温保持在25℃。提取步骤如下:

(1) 取1000克新鲜的绿叶,在韦氏搅切器中粉碎。

(2)将粉碎的1000克绿叶放进加有少量的碳酸钙的丙酮中(温度20℃)进行萃取,直到过滤、清洗后的叶子碎片为无色。

(3)将过滤后的丙酮提取液放到盛有1升石油醚和100ml丙酮的漏斗中,然后轻轻地旋转,同时加放蒸馏水直到分层为止。水层的大部分丙酮和水溶杂质被丢弃,只剩石油醚溶液。

(4)将石油醚溶液用蒸馏水再次净化后,用含有石油醚和0.01克草酸的200ml80%的甲醇溶液清洗5次以上,最后得到黄绿色悬浮液。

(5)用无水硫酸钠对悬浮液进行干燥,并将其渗入到75px厚的蔗糖粉末制成柱中,然后用石油醚清洗沉淀的色素去掉类胡萝卜素,使之只含有天然的叶绿素。

(6)含有天然叶绿素的蔗糖柱分两层,绿层有4-10mm的叶绿素b层,另一蓝层为2-6mm的叶绿素a层。

(7)将位于蓝层正中的部分(约占蓝层的一半) 放入醚中,对此悬浮液进行过滤、洗提,用蒸馏水清洗,用硫酸钠干燥,再用器皿进行过滤后,得到叶绿素a。

(8)将(6)中的绿层中间部分移出,迅速放入醚中过滤、洗提,制成叶绿素b醚溶液。

叶绿素 - 用途

叶绿素产品

造血功能

诺贝尔得奖人Dr.Richard Willstatter和Dr.Hans Fisher发现:叶绿素的分子与人体的红血球分子在结构上很是相似,唯一的分别就是各自的核心为镁原子与铁原子。因此,饮用叶绿素对产妇与因意外失血者会有很大的帮助。

帮助解除体内杀虫剂与药物残渣

营养学家Bernard Jensen博士指出,叶绿素能除去杀虫剂与药物残渣的毒素,并能与辐射性物质结合而将之排出体外。此外,他也发现一般上健康的人会比病患者拥有较高的血球计数,但通过吸收大量的叶绿素之后,病患者的血球计数就会增加,健康状况也会有所改善。

养颜美肤

新英国医药期刊曾经做过这样的报导:叶绿素有助于克制内部感染与皮肤问题。美国外科杂志报导:Temple大学在1200名病人身上,尝试以叶绿素医治各种病症,效果极佳。

叶绿素 - 新闻动态

澳研究人员偶然提取到新型叶绿素,澳大利亚悉尼大学生命科学学院研究人员宣布,他们发现了一种新叶绿素,它在生物能源领域可望拥有广阔的应用前景。

美国安诺实验室的手持式叶绿素测定仪采用荧光光度法,免去传统的化学法检测水中叶绿素含量时需要对叶绿素进行萃取的步骤,直接检测活体叶绿素,使检测更加方便快捷。

相关文章

西湖大学又一篇Science,这次是李小波团队

北京时间2023年10月6日,西湖大学生命科学学院李小波团队在Science发表题为“Achlorophyllcsynthasewidelyco-optedbyphytoplankton”的文章,首次......

我国科学家破解叶绿体蛋白转运之谜

从西湖大学获悉,该校生命科学学院特聘研究员闫浈实验室的相关研究揭开了叶绿体蛋白转运之谜,其研究结果在线发表于《细胞》期刊。“光合作用被称为地球上最重要的化学反应。”闫浈介绍,叶绿体作为光合作用的重要场......

碱胁迫降低燕麦叶绿素含量分子机制

近日,中国农业科学院草原研究所草种质资源与育种团队揭示了碱处理抑制燕麦叶绿素积累的分子机制,相关研究成果发表在《植物科学前沿(FrontiersinPlantScience)》上。土地盐碱化是我国面临......

叶绿素和类胡萝卜素的吸收光谱有哪些差别?

叶绿素,是植物进行光合作用的主要色素,是一类含脂的色素家族,位于类囊体膜。叶绿素吸收大部分的红光和紫光但反射绿光,所以叶绿素呈现绿色,它在光合作用的光吸收中起核心作用。叶绿素为镁卟啉化合物,包括叶绿素......

研究揭示内陆浑浊水体叶绿素a浓度遥感定量反演算法

叶绿素a浓度是藻类生物量的指示指标,是水质的重要表征参数,也是水环境研究(还是常规监测)必须监测的指标。湖泊叶绿素浓度的调查不仅可以确定水体的营养状态,为湖泊治理和渔业资源管理提供基础信息,而且有助于......

我国基于湖泊类型的富营养化管理方案研究获进展

营养盐、叶绿素a和透明度的定量关系是富营养化管理的基础模型,如应用非常广泛的营养状态指数(TSI)就是基于上述关系构建的。然而,湖泊水文形态条件(如换水周期和水深)、物理化学因子(如光照和温度)和生物......

我国学者揭示千岛湖垂向叶绿素最大值分布位置

深水湖库往往存在垂向热力分层,决定了溶氧和营养盐等化学因子以及浮游植物和浮游动物等生物因子垂直分层和混合交换,进而深刻影响湖库生态系统结构和功能。在全球变化背景下,气温升高和富营养化加剧对湖库热力分层......

corallicolid不能进行光合作用也可产生叶绿素

顶复动物亚门(Apicomplexa)是一组专性细胞内寄生虫,包括疟疾和弓形虫病等人类疾病的致病因子。顶复动物亚门是由自由生活的光养性祖先进化而来的,但是人们对这种向寄生过渡的过程如何发生仍然是不清楚......

发现新奇生物:产生叶绿素但无光合作用,寄居七成珊瑚

科学家们首次发现了一种可产生叶绿素但不参与光合作用的生物体——“corallicolid”,其存在于全球70%的珊瑚中。研究发表于最新一期《自然》杂志,有望为人类更好地保护珊瑚礁提供新线索。加拿大不列......

Nature|发现无光合作用但能产生叶绿素的生物

Apicomplexa(apicomplexanparasites,顶复门寄生虫)是一类专性细胞内寄生虫。一些顶复门寄生虫是人类疾病的致病因子,如疟疾和弓形虫病。Apicomplexans是从光养生物......