发布时间:2020-04-29 20:36 原文链接: RealspaceandrealtimedynamicsofCRISPRCas9visualizedby...(五)

Correlation analysis of HS-AFM images

2D correlation coefficients were calculated between the HS-AFM images of the first frame and each of the frames within the Region of Interest (ROI) (i.e., the first frame is the reference)23. The sizes of the ROIs for apo-Cas9 and Cas9–RNA that enclosed the whole Cas9 molecule were about 27 × 24 nm2. For the Cas9–RNA–DNA complex, the sizes of the ROIs for the REC, HNH and RuvC-PI domains that enclosed the whole region of each domain were about 13 × 10 nm2, 7 × 7 nm2 and 13 × 10 nm2, respectively. The 2D correlation coefficient was calculated frame by frame for each ROI. The 2D correlation coefficient is defined as,

r=∑m∑n(Hmn−H¯)(Rmn−R¯)(∑m∑n(Hmn−H¯)2)(∑m∑n(Rmn−R¯)2)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−√

in whichHmn

andRmnare the heights at the pixel point(m,n)in the ROI to be analyzed and the reference ROI of the reference frame, respectively.andare the mean values of the height matricesHandR

, respectively.

Calculation of the center positions of HS-AFM images

The center positions of the HNH and REC domains were calculated, as described below. First, the ROIs that enclosed the whole HNH and REC domains were about 7 × 7 nm2, and then the center positions of the ROIs were calculated by the X, Y, and Z data of the HS-AFM images. The X and Y data correspond to the lateral coordinates, while the Z data correspond to the height. After the conformational change in the HNH domain, the identical ROIs were used for the calculation of the center positions.

Data availability

The data sets generated during the current study are available from the corresponding author upon request.

References

  1. 1.

    Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell                           157, 1262–1278 (2014).

  2. 2.

    Marraffini, L. A. CRISPR-Cas immunity in prokaryotes. Nature                           526, 55–61 (2015).

  3. 3.

    Wright, A. V., Nunez, J. K. & Doudna, J. A. Biology and applications of CRISPR systems: harnessing Nature’s toolbox for genome engineering. Cell                           164, 29–44 (2016).

  4. 4.

    Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature                           471, 602–607 (2011).

  5. 5.

    Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature                           468, 67–71 (2010).

  6. 6.

    Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA                           109, E2579–2586 (2012).

  7. 7.

    Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science                           337, 816–821 (2012).

  8. 8.

    Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science                           339, 819–823 (2013).

  9. 9.

    Jinek, M. et al. RNA-programmed genome editing in human cells. Elife                           2, e00471 (2013).

  10. 10.

    Mali, P. et al. RNA-guided human genome engineering via Cas9. Science                           339, 823–826 (2013).

  11. 11.

    Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. & Doudna, J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature                           507, 62–67 (2014).

  12. 12.

    Jinek, M. et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science                           343, 1247997 (2014).

  13. 13.

    Jiang, F., Zhou, K., Ma, L., Gressel, S. & Doudna, J. A. A Cas9-guide RNA complex preorganized for target DNA recognition. Science                           348, 1477–1481 (2015).

  14. 14.

    Anders, C., Niewoehner, O., Duerst, A. & Jinek, M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature                           513, 569–573 (2014).

  15. 15.

    Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell                           156, 935–949 (2014).

  16. 16.

    Jiang, F. et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science                           351, 867–871 (2016).

  17. 17.

    Sternberg, S. H., LaFrance, B., Kaplan, M. & Doudna, J. A. Conformational control of DNA target cleavage by CRISPR-Cas9. Nature                           527, 110–113 (2015).

  18. 18.

    Dagdas, Y. S., Chen, J. S., Sternberg, S. H., Doudna, J. A. & Yildiz, A. A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Sci. Adv.                           3, eaao0027 (2017).

  19. 19.

    Ando, T., Uchihashi, T. & Scheuring, S. Filming biomolecular processes by high-speed atomic force microscopy. Chem. Rev.                           114, 3120–3188 (2014).

  20. 20.

    Shibata, M., Yamashita, H., Uchihashi, T., Kandori, H. & Ando, T. High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. Nat. Nanotech.                           5, 208–212 (2010).

  21. 21.

    Kodera, N., Yamamoto, D., Ishikawa, R. & Ando, T. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature                           468, 72–76 (2010).

  22. 22.

    Igarashi, K. et al. Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science                           333, 1279–1282 (2011).

  23. 23.

    Uchihashi, T., Iino, R., Ando, T. & Noji, H. High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science                           333, 755–758 (2011).

  24. 24.

    Chiaruttini, N. et al. Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell                           163, 866–879 (2015).