尽管根据本研究中的数据判断是引人注意的并且可以推断使用小的和大的MW示踪剂的BBB替代半影成像生物标记物的空间分布不同。类似的磁共振成像分析的扩散灌注错配模型,这些研究的缺点会阻碍确切的结论。与Nagaraja和他的同事的研究相比,本研究中使用Cy5.5和BSA-Cy5.5早分组的动物中,不平等交付的两个造影剂由于局部灌注差异不大可能给予最少量的interanimal变异性rCBF测量评价。

BBB渗透性的时间动力学已经在脑缺血实验模型中描述。例如,瞬态全脑缺血的特点是血脑屏障的两个阶段的开放,顶峰在1小时和24小时,在重灌注后6小时向后倾斜。每一个血脑屏障紊乱的事件伴随着脑血管蛋白表达的明显变化:离子转运和能量驱动泵在一小时损失,而且炎症的和血管生成蛋白在24小时表达量增加。经过短暂的和适度的MCAO后BBB紊乱的时间模式,使用纵向光学成像的研究表明两个阶段全脑缺血模式表现出惊人的相似之处,虽然持续时间较长。24小时时同过测量不同深度的荧光浓度表现出身体同侧Cy5.5对比增强,3天的停滞期,经过MCAO7天后出现二次增长。有趣的是,本研究同样还发现在对侧半球的Cy5.5 BBB渗透性明显增加;Cy5.5血脑屏障干扰,在ipsi和侧半球解决经过适度的MCAO14天时。文献研究在适度的MCAO后持续很长一段时间的BBB渗透性变化缺乏。然而, 通常在温和的外伤性脑损伤和与神经元的活动后持续血脑屏障(多年的)在病人中很常见。Miyashita和他的同事对小鼠进过2分钟MCAO进行的全面的研究“进过处理后不论是梗塞面积还是身体同侧的神经胶质过多症都是至少在7天后化脓或增加,以及PECAM-1-positive细胞的增加,表明处理后7天和56天之间毛细管密度增加。经过处理后观察Cy5.5使用体内成像,这些改变可能造成长期血脑屏障干扰。

成像技术提供“组织危险”中风治疗前后的信息,现在尝试用再灌祝贺扩散MRI结合,有利于急性卒中的管理。内源荧光寿命-是一个潜在的新的成像参数,它可以提供体内组织位点的额外的信息,因为他对组织微环境包括组织pH,组织缺氧或缺血敏感度高。有趣的是,在脑缺血区域与模拟组动物或对侧半球的相比内源的FI和都有明显的增加,允许缺血性中风的可靠检测,甚至在缺乏对照注入的情况下。这些变化的原因值得深思;尽管可能由于血脑屏障干扰(使用对比增强的方法)会引起脑水肿,缺血或损坏的组织可能会引起代谢变化。在我们最近的肾缺血/再灌注的研究中,内源性t对指数衰减分析可以可靠的鉴别体内肾脏脑缺血。更好的理解微环境的小变化,引起内源FI和变化,在今后必需考虑到作为代谢组织的分子成像指示物。时间分辨扩散光层析成像最近发现, 人类诊断的生物学组织提供解剖学和功能信息。内生光组织成像参数的非侵成像,包括t,目前应用于乳腺癌的临床诊断。

本研究中中风的体内时域光学成像的应用已经做了描述,可以促进新成像技术的发展和替代监控中风发生、持续和恢复的标记物。在缺血前后脑血管损伤的程度是脑水肿、出血性变换,中风患者的结果的积极的指标。非侵评价缺血性中风的持续和分辨率的选择性血脑屏障通透性的大小,可以有效的替代中风严重性和治疗的转换后效率的指示物。

参考文献
1. Kidwell CS, Hsia AW. Imaging of the brain and cerebral vasculature in patients with suspected stroke: advantages and disadvantages of CT and MRI. Curr Neurol Neurosci Rep 2006;6:9–16.
2. Saleh A, Schroeter M, Ringelstein A, et al. Iron oxide particle-enhanced MRI suggests variability of brain inflammation at early stages after ischemic stroke. Stroke 2007;38:2733–7.
3. Tobias JD. Cerebral oxygenation monitoring: nearinfrared spectroscopy. Expert Rev Med Devices 2006;3:235–43.
4. Ntziachristos V, Ripoll J, Wang LV, Weissleder R.Looking and listening to light: the evolution of wholebody photonic imaging. Nat Biotechnol 2005;23:313–20.
5. Bloch S, Lesage F, Mclntosh L, et al. Whole-body fluorescence lifetime imaging of a tumor-targeted nearinfrared molecular probe in mice. J Biomed Opt 2005;10:054003.
6. Day RN, Schaufele F. Imaging molecular interactions in living cells. Mol Endocrinol 2005;19:1675–86.
7. Lakowicz JR, editor. Principle of fluorescence spectroscopy. 2nd ed. New York: Kluwer Academic/Plenum Publishers; 1999.
8. Elson D, Requejo-Isidro J, Munro I, et al. Time-domain fluorescence lifetime imaging applied to biological tissue. Photochem Photobiol Sci 2004;3:795–801.
9. Pardridge WM. Drug and gene delivery to the brain: the vascular route. Neuron 2002;36:555–8.
10. MacManus JP, Fliss H, Preston E, et al. Cerebral ischemia produces laddered DNA fragments distinct from cardiac ischemia and archetypal apoptosis. J Cereb Blood Flow Metab 1999;19:502–10.
11. MacManus JP, Jian M, Preston E, et al. Absence of the transcription factor E2F1 attenuates brain injury and improves behavior after focal ischemia in mice. J Cereb Blood Flow Metab 2003;23:1020–8.
12. Abulrob A, Brunette E, Slinn J, et al. In vivo time domain optical imaging of renal ischemia-reperfusion injury: discrimination based on fluorescence lifetime.Mol Imaging 2007;6:304–14.
13. Ma G, Delorme J, Gallant P, Boas D. Comparison of simplified Monte Carlo simulation and diffusion approximation for fluorescence signal from phantoms with typical mouse tissue optical properties. Appl Opt 2007;46,1686–92.
14. Phan TG, Donnan GA, Wright PM, Reutens DC. A digital map of middle cerebral artery infarcts associated with middle cerebral artery trunk and branch occlusion.Stroke 2005;36:986–91.
15. Damasio HA. Computed tomographic guide to the identification of cerebral vascular territories. Arch Neurol 1983;40:138–42.
16. Bloch S, Xu B, Ye Y, et al. Targeting beta-3 integrin using a linear hexapeptide labeled with a near-infrared fluorescent molecular probe. Mol Pharm 2006;3:539–49.
17. Hall D, Ma G, Lesage F, Wang Y. Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium. Opt Lett 2004;29:2258–60.
18. Ma G, Gallant P, Mclntosh L. Sensitivity characterization of a time-domain fluorescence imager: eXplore Optix. Appl Opt 2007;46:1650–7.
19. Lam S, Lesage F, Intes X. Time-domain fluorescent diffuse optical tomography: analytical expressions. Optics Express 2005;13:2263–75.
20. Nagaraja TN, Karki K, Ewing JR, et al. Identification of variations in blood-brain barrier opening after cerebral ischemia by dual contrast-enhanced magnetic resonance imaging and T1sat measurements. Stroke 2008;39:427–32.
21. Latour LL, Kang DW, Ezzeddine MA, et al. Early blood-brain barrier disruption in human focal brain ischemia. Ann Neurol 2004;56:468–77.
22. Belayev L, Busto R, Zhao W, et al. Middle cerebral artery occlusion in the mouse by intraluminal suture coated with poly-L-lysine: neurological and histological validation. Brain Res 1999;833:181–90.
23. Mao Y, Yang G-Y, Zhou L-F, et al. Focal cerebral ischemia in the mouse: description of a model and effects of permanent and temporary occlusion. Mol Brain Res 1999;63:366–70.
24. Farber JL, Chien KR, Mittnacht S. Myocardial ischemia: the pathogenesis of irreversible cell injury in ischemia. Am J Pathol 1981;102:271–81.
25. Türeyen K, Vemuganti R, Sailor KA, Dempsey RJ. Infarct volume quantification in mouse focal cerebral ischemia: a comparison of triphenyltetrazolium chloride and cresyl violet staining techniques. J Neurosci Methods 2004;139:203–7.
26. Miyashita K, Itoh H, Arai H, et al. The neuroprotective and vasculo-neuro-regenerative roles of adrenomedullin in ischemic brain and its therapeutic potential. Endocrinology  2006;147:1642–53.
27. Dharmarajan S, Schuster DP. Molecular imaging of the lungs. Acad Radiol 2005;12:1394–405.
28. Vérant P, Serduc R, van der Sanden B, et al. Subtraction method for intravital two-photon microscopy: intraparenchymal imaging and quantification of extravasation in mouse brain cortex. J Biomed Opt 2008;13:011002.
29. Pardridge WM Blood-brain barrier biology and methodology. J Neurovirol 1999;5:556–9.
30. Neuwelt E, Abbott NJ, Abrey L, et al. Strategies to advance translational research into brain barriers. Lancet Neurol 2008;7:84–96.
31. Preston E, Webster J. Differential passage of [14C] sucrose and [3H] inulin across rat blood-brain barrier after cerebral ischemia. Acta Neuropathol (Berl) 2002;103:237–42.
32. Huang ZG, Xue D, Preston E, et al. Biphasic opening of the blood-brain barrier following transient focal ischemia: effects of hypothermia. Can J Neurol Sci 1999;26:298–304.
33. Kidwell CS, Alger JR, Saver JL. Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke 2003;34:2729–35.
34. Haqqani AS, Nesic M, Preston E, et al. Characterization of vascular protein expression patterns in cerebral ischemia/reperfusion using laser capture microdissection and ICAT-nanoLC-MS/MS. FASEB J 2005;19:1809–21.
35. Tomkins O, Shelef I, Kaizerman I, et al. Blood-brain barrier disruption in post-traumatic epilepsy. J Neurol Neurosurg Psychiatry 2008;79:774–7.
36. Zhao H, Gao F, Tanikawa Y, et al. Time-resolved diffuse optical tomographic imaging for the provision of both anatomical and functional information about biological tissue. Appl Opt 2005;44:1905–16.
37. Intes X. Time-domain optical mammography SoftScan: initial results. Acad Radiol 2005;12:934–47.
38. Mikulis DJ. Functional cerebrovascular imaging in brain ischemia: permeability, reactivity, and functional MR imaging. Neuroimaging Clin North Am 2005;15:6