发布时间:2020-10-05 10:56 原文链接: 宽带集成上下变频器提升微波无线电性能解析

ADI公司推出了一对高集成的微波上下变频器,ADMV1013和ADMV1014。这两颗器件的工作频率极宽,从24 GHz到44 GHz,并提供50 匹配,同时可以支持大于1 GHz的瞬时带宽。ADMV1013和ADMV1014的性能特性简化了小型5G毫米波(mmW)平台的设计和实现,这些平台包括回传和前传应用中常见的28 GHz和39 GHz频段,以及许多其他的超带宽发射器和接收器应用。

每个上变频器和下变频器芯片都是高集成的(见图1),由IQ混频器及片内正交移相器构成,可配置为基带IQ模式(零中频,IQ频率支持dc至6 GHz),或者配置为中频模式(实中频,中频频率支持800 MHz至6 GHz)。上变频器的RF输出端集成了一个含压控衰减器(VVA)的驱动放大器,下变频器的RF输入端包含低噪声放大器(LNA)和带VVA的增益放大器。两个芯片的本振(LO)链路由一个集成式LO缓冲放大器、一个四倍频器和一个可编程的带通滤波器组成。大部分可编程和校准功能都通过SPI接口进行控制,这使得IC易于通过软件配置至出色的性能水平。

24 GHz至44 GHz宽带集成上变频器和下变频器可提升微波无线电性能,同时缩小尺寸

24 GHz至44 GHz宽带集成上变频器和下变频器可提升微波无线电性能,同时缩小尺寸

图1.(a) ADMV1013上变频器芯片框图。(b) ADMV1014下变频器芯片框图。

ADMV1013上变频器内部视图

ADMV1013提供两种频率转换模式。一种模式是从基带I和Q直接上变频至RF频段。在这种I/Q模式下,基带I和Q差分输入信号范围是从dc到6 GHz,例如,由一对高速数模转换器(DAC)产生的信号。IQ输入信号的共模电压范围为0 V至2.6 V;因此,它们可以满足大部分DAC的接口需求。当所选DAC的共模电压在这个范围内时,可以通过配置上变频器的寄存器,使其输入共模电压和DAC输出的共模电压实现最佳的匹配,从而简化接口设计。另一种模式是复IF输入(例如由正交数字上变频器器件生成的信号),单边带上变频到RF频段。ADMV1013的独特之处在于,它能够在I/Q模式下对I和Q混频器的直流偏置误差进行数字校正,从而改善RF输出的LO泄漏。校准之后,在最大增益下,RF输出端的LO泄漏可以低至-45 dBm。对零中频无线电设计造成妨碍的一个更困难的挑战是I和Q的相位不平衡,导致边带抑制能力差。零中频面临的另一个挑战是边带通常太接近微波载波,使滤波器难以实现。ADMV1013解决了这个问题,它允许用户通过寄存器调谐对I和Q相位不平衡进行数字校正。正常操作期间,上变频器展现出未经校准的26 dBc边带抑制。使用片内寄存器之后,其边带抑制经过校准可以提高到约36 dBc。两种校准特性都是通过SPI实现,无需额外电路。在I/Q模式下,还可以通过调节基带I和Q DAC的相位平衡来进一步提高边带抑制。这些性能增强特性帮助最小化外部滤波,同时改善微波频率下的无线电性能。

24 GHz至44 GHz宽带集成上变频器和下变频器可提升微波无线电性能,同时缩小尺寸

图2.采用6 mm × 6 mm表贴封装的ADMV1013在评估板上的图示。

集成了LO缓冲器之后,该部件所需的驱动力仅为0 dBm。因此,可使用集成压控振荡器(VCO)的频综(例如ADF4372或ADF5610)直接地驱动该器件,进一步减少外部组件数量。片内四倍频器将LO频率倍升至所需的载波频率,然后通过可编程的带通滤波器滤除不需要的倍频器谐波,该带通滤波器放置在混频器正交相位生成模块之前。这种布局大大减少了进入混频器的杂散频率,同时允许该部件与外部低成本、低频率的频率合成器/VCO协同工作。然后,经过调制的RF输出通过一对放大器级(两者中间存在一个VVA)进行放大。增益控制模块为用户提供35 dB调节范围,最大级联转换增益为23 dB。ADMV1013采用40引脚基板栅格阵列封装(见图2)。这些特性结合起来,可以提供卓越的性能、最大的灵活性和易用性,同时最大程度减少需要的外部组件的数量。因此,可以实现小型蜂窝基站等小型微波平台。

ADMV1014下变频器内部视图

ADMV1014也有一些相似的元件,例如其LO路径中包含LO缓冲器、四倍频器、可编程的带通滤波器,以及正交移相器。但是,构建作为下变频器件(见图1b中的框图),ADMV1014的RF前端中安装有一个LNA,紧接着安装了一个VVA和一个放大器。连续的19 dB增益调整范围由施加给VCTRL引脚的dc电压进行控制。用户可以选择在I/Q模式下使用ADMV1014作为从微波到基带dc的直接解调器。在这种模式下,经过解调的I和Q信号在各自的I和Q差分输出处放大。它们的增益和dc共模电压可以通过SPI由寄存器设置,使得差分信号可以dc耦合到(例如)一对基带模数转换器(ADC)。或者,ADMV1014可以用作单端复IF端口的镜像抑制下变频器。在任何一种模式下,I和Q相位、幅度的不平衡都可以通过SPI进行校正,在下变频器解调至基带或IF时,提高其镜像抑制性能。总的来说,下变频器在24 GHz至42 GHz频率范围内,可以提供5.5 dB总级联噪声系数,以及17 dB最大转换增益。当工作频率接近基带边缘(高达44 GHz)时,级联式NF仍然坚定保持6 dB。

24 GHz至44 GHz宽带集成上变频器和下变频器可提升微波无线电性能,同时缩小尺寸

图3.采用更小型的5 mm × 5 mm封装的ADMV1014在评估板上的图示。

大幅提升5G mmW无线电性能

图4所示为下变频器在28 GHz频率时的测量性能,测量时,采用5G NR波形,包含4个独立的100 MHz通道,每个通道都在-20 dBm输入功率下调制至256 QAM。测量得出的EVM结果为-40 dB (1% rms),支持对mmW 5G所需的高阶调制方案进行解调。凭借上下变频器>1 GHz的带宽容量,以及上变频器的23 dBm OIP3和下变频器的0 dBm IIP3,其组合可以支持高阶QAM调制,从而实现更高的数据吞吐量。此外,该器件也支持其他应用,如卫星和地面接收站宽带通信链路、安全通信无线电、RF测试设备和雷达系统。其出色的线性度和镜像抑制性能令人瞩目,与紧凑的解决方案尺寸、较小外形、高性能微波链路结合之后,可以实现宽带基站。

24 GHz至44 GHz宽带集成上变频器和下变频器可提升微波无线电性能,同时缩小尺寸

24 GHz至44 GHz宽带集成上变频器和下变频器可提升微波无线电性能,同时缩小尺寸

图4.测量得出的EVM性能(rms百分比)与28 GHz时的输入功率以及对应的256 QAM星座图


相关文章

单次曝光准相位差波前检测研究获进展,助力X射线成像

中国科学院上海光学精密机械研究所高功率激光物理联合实验室提出了基于多焦斐波那契波带片的改进型单次曝光准相位差波前传感技术。相关研究成果发表在《应用物理快报》(AppliedPhysicsLetters......

2021传感器大会|机器视觉与传感技术专场活动顺利举办!

2021年11月2日,由中国科学技术协会、河南省人民政府主办,中国仪器仪表学会、河南省科学技术厅、智汇工业、OPC基金会承办的2021世界传感器大会分场活动之机器视觉与传感技术专场活动在郑州国际会展中......

中外团队研制出可检测病毒的磁性生物传感技术

近日,中国科学院上海微系统与信息技术研究所董慧课题组、丁古巧课题组与上海科技大学马培翔副研究员以及德国于利希研究中心Hans-JoachimKrause教授合作,共同在极低场磁共振系统(ULFNMR)......

量子信息与传感技术科学论坛在广州举行

11月16日,2019年岭南科学论坛•双周创新论坛系列活动之“量子信息与传感技术科学论坛”在广州举行。“国家智能测控系统产业计量测试联盟”也在论坛上宣布成立。据悉,该论坛将形成《关于加快广东量子信息与......

全国产芯片华睿2号通过“核高基”验收

  记者24日从中国电科14所获悉,由该所牵头研制的华睿2号DSP芯片日前顺利通过“核高基”课题验收,即将进入全面应用阶段。据悉,此次通过“核高基”验收的华睿2号DSP芯片为全自主......

国内科技专家:我国高端芯片研制已具备基础

十三五国家重点研发计划“光电子与微电子器件及集成”重点专项专家组组长、中科院半导体所副所长祝宁华表示,我国近年来不间断地支持光电子领域的科技创新,从“863”计划、“973”计划到国家自然科学基金等各......

科技部:中国发布人工智能规划并不是为挑战哪国

今天上午,国务院新闻办举行国务院政策例行吹风会。科技部副部长李萌表示,中国发布人工智能规划并不是为了挑战哪国,而是立足于经济社会发展的战略需求做出的安排。政策吹风会上,李萌介绍《新一代人工智能发展规划......

传感技术国家重点实验室入选北京市国际科技合作基地

电子所传感技术国家重点实验室入选首批北京市国际科技合作基地经过精心的申请准备和激烈的答辩,中科院电子学研究所传感技术国家重点实验室最终入选首批北京市国际科技合作基地。1月12日,北京市科委在2012新......

传感技术实验室召开第五届学术委员会第四次会议

“传感技术联合国家重点实验室”第五届学术委员会第四次会议于12月23日至12月24日在中科院上海微系统与信息技术研究所召开。学术委员、依托单位领导、实验室领导及部分实验室成员共计40余人出席本次会议。......