发布时间:2022-05-11 16:13 原文链接: 生物被膜构筑细菌工厂“防护网”

  “万物生长靠太阳”。光合作用是指植物或藻类吸收太阳光,将二氧化碳和水合成有机物,并释放氧气的过程。

  而近期科学领域非常“火爆”的半人工光合作用的原理与其十分类似,主要是通过人为方式模拟光合作用,利用光能催化生产燃料分子或各种有用化学品。半人工光合系统通常采用半导体作为吸光材料,但反应过程中吸光材料与生物细胞不兼容,往往导致光合作用效果较差、细胞难以循环使用等一系列问题。

  5月7日发表在《科学进展》的一项最新研究表明,细菌生物被膜可提供一个理想界面,在微米尺度物理分隔半导体纳米材料和细菌,显著降低光照条件下半导体材料对细菌细胞膜的破坏,最终提高半人工光合作用体系的稳定性和可持续性。利用这一界面,研究人员实现了光驱二氧化碳的高效固定,为收获高附加值的能源和化学品提供了重要工具。

  中国科学院深圳先进技术研究院合成生物学研究所、深圳合成生物学创新研究院研究员钟超课题组副研究员王新宇、上海科技大学博士生张继聪为文章共同第一作者,钟超为通讯作者。

  改造大肠杆菌生物被膜

  当前的半人工光合系统通常由吸光材料和工程细菌两部分构成,前者负责吸收并储存太阳光中的能量,后者则可以利用这些能量生产各种对人类有用的产品。因其优良的吸光性能,半导体材料常被作为半人工光合作用的吸光材料。

  然而,在半导体材料吸收太阳光能量的同时,其周围也会生成一种“氧化空穴”,后者对细菌有很强的毒性。在反应过程中,光生“氧化空穴”会对细菌细胞造成破坏,甚至导致整个细胞破裂,严重影响“细菌工厂”正常运转。

  那么,该如何解决这一问题呢?

  在该研究中,研究团队从减少半导体材料与细菌接触的角度出发,进行了响应设计与研究。他们在半人工光合作用体系中改造大肠杆菌生物被膜,通过生物被膜的微生物原位矿化机制,构建了一种牢固的生物材料+无机材料兼容界面。

  研究人员首先在基因层面对大肠杆菌生物被膜的主要成分——CsgA蛋白进行了重新设计,使其与具有矿化能力的短肽融合表达,从而原位固定并负载半导体颗粒。在生物被膜的固定下,半导体材料很难对细菌产生破坏,相当于在“细菌工厂”表面人为铺上一张“防护网”。

  “在半人工光合作用这一新兴领域,团队通过合成生物学技术构建的大肠杆菌功能生物被膜,起到了‘防护网’的作用。”王新宇说,通过表达具有矿化能力的胞外被膜蛋白,高能半导体材料与细菌避免了直接接触,从而大大降低了对工程菌的伤害。

  科学手段助力绿色制造

  细菌生物被膜在自然界中普遍存在,由细菌及其分泌的胞外基质共同组成。这种天然的活体材料具有功能可编程、自我再生以及环境耐受等特点,在规模化光催化方面有较大应用潜力。

  研究人员通过工程改造方式,使构建的大肠杆菌生物被膜具备了矿化和固定二氧化碳的能力,成功建立了实现光催化还原二氧化碳并生成甲酸的半人工光合系统。

  然而,在生物被膜半人工光合作用体系中,研究人员仅引入单一的酶,还无法实现高附加值经济产物的生成。未来,研究团队将继续对微生物进行改造,构建从二氧化碳到长链高附加值化学分子的合成通路,并对生物被膜的光催化反应体系进行中试发酵尝试,验证该成果体系的规模化生产能力。

  当前,在合成生物学领域,我国科学家取得了将二氧化碳转化为淀粉或葡萄糖的重大突破,然而,整个体系关键的第一步反应——二氧化碳固定仍是通过化学催化方法实现的,增加了反应体系的复杂性。该研究通过半人工光合体系的构建实现了全细胞的二氧化碳固定,未来有望通过全链条优化,实现基于全细胞体系的从二氧化碳到高附加值长链化合物的转化。

  “我们利用合成生物技术工程改造细菌生物被膜,构建了一个全新的生物—无机兼容界面,并实现了从单酶到全细胞尺度上可循环利用的半人工光合作用体系,为未来可持续性半人工光合体系的开发提供了新思路,也展现了材料合成生物学技术在能源领域的广阔应用前景。”钟超表示。

相关文章

生物被膜构筑细菌工厂“防护网”

“万物生长靠太阳”。光合作用是指植物或藻类吸收太阳光,将二氧化碳和水合成有机物,并释放氧气的过程。而近期科学领域非常“火爆”的半人工光合作用的原理与其十分类似,主要是通过人为方式模拟光合作用,利用光能......

生物被膜构筑细菌工厂“防护网”

“万物生长靠太阳”。光合作用是指植物或藻类吸收太阳光,将二氧化碳和水合成有机物,并释放氧气的过程。而近期科学领域非常“火爆”的半人工光合作用的原理与其十分类似,主要是通过人为方式模拟光合作用,利用光能......

湖北大学在细菌肿瘤治疗领域获突破

近日,湖北大学生命科学学院、省部共建生物催化与酶工程国家重点实验室教授马立新团队在细菌肿瘤治疗领域再获突破,相关成果以《细菌诱导肿瘤血栓并表达溶细胞素增强肿瘤治疗》为题,近日发表于AdvancedSc......

用石墨烯“聆听”细菌“配乐”

科技日报北京4月18日电(实习记者张佳欣)你有没有想过细菌会发出独特的声音?如果我们能听到细菌的声音,我们就能知道它们是否还活着。当细菌被抗生素杀死时,这些声音就会停止,除非细菌对抗生素产生耐药性。现......

环境和生活方式塑造肠道微生物组

科技日报讯(实习记者张佳欣)人类肠道中的细菌与多种疾病有关,但有哪些细菌是健康的,哪些是由疾病或药物造成的?科学家迄今尚不十分清楚。荷兰格罗宁根大学傅静远教授团队与合作者在4月13日的《自然》杂志上发......

科学家发现迄今为止体积最大的细菌

人们通常需要借助显微镜才可以观察到微生物细胞。近日,美国劳伦斯伯克利实验室的研究团队发现了一种单个细胞长度可以超过2cm、目前已知体积最大的细菌。相关成果在《Science》发表,论文的标题为:Lar......

迄今最大细菌肉眼可见

原文地址:http://news.sciencenet.cn/htmlnews/2022/3/474892.shtm科技日报讯(实习记者张佳欣)根据定义,微生物的个体小到肉眼无法可见。但据《科学》杂志......

基因改造细菌将废气转为化工原料

美国西北大学和郎泽科技公司研究人员在最新一期《自然·生物技术》发表论文称,他们在一项新的试点研究中,将一种梭菌进行遗传工程改造,用于合成此前它们无法产生的化合物,这种选择、设计和优化细菌菌株的过程,成......

科学家揭示细菌对噬菌体抗性进化的机制

近期,来自美国麻省理工学院和法国索邦大学的研究团队发现,可移动遗传元件的快速进化转换可以驱动细菌对噬菌体的抗性。该研究成果在《Science》上发表,题为:Rapidevolutionaryturno......

科学家开发出一种对多重耐药细菌有效的合成抗生素

近期,来自美国哈佛大学和伊利诺伊大学芝加哥分校等研究团队开发了一种对多重耐药细菌有效的合成抗生素。研究成果发表在《Nature》上,题为:Asyntheticantibioticclassoverco......