发布时间:2013-04-17 16:35 原文链接: Cell子刊:神经细胞为何如此强韧

  人体中的神经细胞可以达到三英尺长,而且不会发生断裂或瓦解,是什么让神经细胞如此强韧呢?

  Illinois大学的研究人员发现,细胞骨架成分中的一种独特修饰,让神经元上长长的轴突特别强韧,文章发表在四月十日的Neuron杂志上。这一发现将帮助人们更好的对神经退行性疾病进行治疗。

  微管是由微管蛋白tubulin聚合而成的中空长圆柱,是机体所有细胞内的重要骨架。神经元中的微管负责细胞内运输、促进轴突生长,是神经形态形成的基础。

  “除了神经元之外,细胞的微管处于持续动态中,不断经历拆卸和重建,”领导这项研究的Illinois大学教授Scott Brady说。在机体中只有神经元生长得如此之长,而且一旦生成这些神经元就将伴随个体一生,例如80或100年。

  与其他细胞相比,神经元中的微管特别稳定,能够耐受多种实验条件。例如,在低温、Ca2+或有丝分裂抑制剂等条件下,一般细胞中的微管会瓦解,但神经元中的微管却依然稳定。这样的稳定性对于轴突的正常生长和维持很重要。不过,在衰老或神经退行性变中,神经元微管过于稳定也会损害神经元的正常功能。

  在此前的研究中Brady指出,神经元的稳定性依赖于微管蛋白tubulin的一种独特修饰。“但当时我们还无法确定这种修饰是什么,”他说。

  于是,文章的第一作者Yuyu Song开始着手解决这一问题,她原是Brady实验室的一名研究生,现在是Howard Hughes医学研究所的一名博后。

  研究人员利用多方法解析了tubulin上的修饰,以及该修饰发生的位点。他们发现,微管蛋白tubulin上容易破裂的薄弱环节,都通过化学键连上了多胺,而且负责添加这些保护性的多胺的是谷氨酰胺转移酶(transglutaminase)。

  研究显示,谷氨酰胺转移酶催化翻译后修饰,给微管蛋白的薄弱环节添加了多胺,增加了蛋白所带的正电荷。研究人员在体内和体外实验中,分别抑制了神经元中的多胺合成和谷氨酰胺转移酶活性,使神经元微管的稳定性显著降低。

  封闭微管蛋白tubulin的薄弱位点,使神经元微管获得了非凡的稳定性,Brady说。研究人员还指出,微管稳定性的增加与神经元可塑性降低有关。在衰老和一些神经退行性疾病的进程中,神经元微管过于稳定降低了神经元的可塑性,损害了神经元的正常功能。他们认为,进一步研究将有助于开发预防神经退行性变的新途径,并且帮助人们实现神经再生。

相关文章

研究发现|孕激素或永久重塑女性大脑

成为母亲在生理和心理层面上都是一个变革性的事件。怀孕时,荷尔蒙充斥身体,引起生理和行为变化。英国弗朗西斯·克里克研究所对小鼠的研究表明,雌二醇和孕酮这两种妊娠荷尔蒙通过附着在大脑中的受体上,重塑了大脑......

英国研究利用DNA链重建细胞“骨架”

英国伦敦大学学院领导的一项研究使用DNA链人工重建了构成细胞“骨架”的微小管和线状结构,这些结构赋予了细胞形状并支撑其功能实现。研究结果发表在《自然通讯》(NatureCommunications)杂......

人类与猴子看颜色的方式一样吗?

研究表明,某些负责色觉的神经细胞回路是人类独有的。色觉领域的研究发现了新的证据,表明与猴子相比,人类有能力检测更广泛的蓝色色调。据研究人员称,"在人类视网膜中发现的独特连接可能表明最近的进化......

生物相容性材料制成新人工神经细胞

英国科学家首次在实验室制造出了由生物相容性材料制成的人工神经细胞,这项创新有朝一日可能会被用于合成组织,以修复心脏或眼睛等器官。相关研究发表于近日出版的《自然·化学》杂志。神经元细胞是神经系统最基本的......

神经修复至关重要的“分子胶”被发现了

澳大利亚研究人员发现了一种对调节受损神经修复至关重要的分子,它可以帮助人们从神经损伤中恢复。这一发现是使用秀丽隐杆线虫进行的。研究发表在《科学进展》上。昆士兰大学脑研究所的马西莫·希利亚德教授及其团队......

验证大脑神经细胞再生疗法有三个基本原则

近日,复旦大学脑科学转化研究院彭勃课题组、复旦大学附属华山医院毛颖课题组和上海市精神卫生中心袁逖飞课题组,利用活细胞成像、严谨谱系追踪和药理学等多种手段对NeuroD1介导的小胶质细胞—神经元重编程现......

科研人员揭示母体体温控制对神经细胞发育的重要性

据日本科学技术振兴机构(JST)网站消息,大阪大学蛋白质研究所、东京都健康安全研究中心等机构的科研人员共同组成的研究团队发现胚胎母体体温控制与胚胎神经细胞发育之间的关联。该项研究成果近期发表在《Nan......

最新研究发现人类原肠胚形成阶段神经细胞特化尚未开始

国际著名学术期刊《自然》最新发表一篇胚胎学研究论文,科研人员对人类发育的早期阶段——一个处于原肠胚形成阶段的人类胚胎进行详细的细胞和分子研究,发现神经系统的细胞特化在这个发育阶段尚未开始。该论文称,原......

哺乳动物视网膜中新神经细胞“现身”

美国犹他大学约翰·莫兰眼科中心科学家在最新一期美国《国家科学院院刊》上撰文指出,他们在哺乳动物的视网膜中发现了一种新的神经细胞,有助科学家们更好地理解中枢神经系统。该研究负责人、犹他大学田宁(音译)博......

科学家发现有望治疗阿尔茨海默症的信号分子

神经胶质细胞生态系统内的信号传递对神经元和大脑健康至关重要。尽管人们越来越清楚这些相互作用或影响在阿尔茨海默氏症(AD)治疗上重要的地位,但是目前的研究还不清楚神经胶质细胞在AD患者大脑中β-淀粉样蛋......