发布时间:2013-05-06 15:12 原文链接: 诺奖得主:生物燃料并非理想能源

  1988年诺贝尔化学奖得主Hartmut Michel:生物燃料是一个坏主意

  Hartmut Michel是一个有使命感的人。在对有关生物燃料的炒作感到忍无可忍后,这位诺贝尔奖得主开始努力说服人们:从产出来看,生物燃料是没有意义的,通过光伏电池来利用太阳能才是正道。

  生物燃料常常被描述为零二氧化碳排放、用来对抗全球变暖的理想武器,被吹捧为是减少全球对化石燃料依赖的解决方案。根据国际可持续发展研究所(International Institute for Sustainable Development)的报告,全球各国政府纷纷出台对发展生物燃料的支持政策,向生物燃料的生产与消费中投入了超过200亿美元的津贴。

  各国政府对生物燃料满怀希望与热情,但是,利用可耕种土地或粮食作物来生产生物燃料引发了生物燃料“与人争粮”的争论。像玉米、甘蔗、植物油等此类商品不仅可以作为常规的食物来源,也可以用作生物燃料的生产。在美国、欧盟以及巴西等政府的政策中,这些作物被用作生物燃料的生产,从而导致了粮食供应的短缺。

  Hartmut Michel教授由于在某些特定细菌的细胞膜中发现了光合反应中心的3D结构而获得1988年诺贝尔化学奖。他现在是德国马克斯普朗克生物物理研究所(Max Planck Institute for Biophysics)的主任。此前,他曾经在一篇评论文章中发表了他对生物燃料的观点,最近,在新加坡的新加坡科技研究局(A*STAR)分享了他的想法。

  光合作用的局限

  作为全球顶尖的膜蛋白化学家,Michel教授对光合作用的效率有深刻的理解。他表示,首先从植物将太阳能转变为可利用形式(即NADPH)的方式来看,植物的光和色素只能最多吸收47%的太阳光,而绿光、紫外光和红外光都不可利用。更重要的是,计算显示,大约只有12%的太阳能可被植物转换并储存起来。

  从每公顷土地的生物燃料产量来看,Michel教授表示,在德国,仅有0.3%的太阳能转变为沼气,而其他生物燃料如生物柴油和生物宜春的产量则更低。此外,这些产出中超过50%的价值相当于在肥料、耕作、运输以及生物质转化等方面的投入。在中欧,每平方米可耕作土地的价值相当于150w

  “生物燃料的生产与利用也不是零二氧化碳排放的,”Michel教授说,并且种植用于生物燃料生产的植物是对土地利用度的极大浪费。

  “这将是更好的种植杨树的土地用于生产生物燃料,并转换成热液炭化生物质煤,”他说。这样一个过程涉及在水中生物质加热到摄氏160度,已捕捉到100%的可利用的碳。这样做会节省了高达9倍以上的二氧化碳每平方米相比,生物燃料。

  Michel教授建议,如要提高生物燃料的产出,科学家们可以研究如何通过修饰光合作用体中的色素来提高植物对光的吸收。他解释说,光合作用实际上在低光密度时最有效,在达到五分之一的全光照条件下趋于饱和。科学家可以通过对一个与将二氧化碳固定为可存储能量的酶——RuBisCO进行工程改造来提高效率。由于在红藻中已经发现有更高效的RuBisCO,因而这一目标是可以实现的。

  各国政府对生物能源的政策

  欧盟对于发展生物能源持积极的支持态度,考虑到发展生物燃料对粮食的影响,欧盟委员会通过立法对用粮食生产生物燃料的比例做了规定。在去年9月,欧盟委员会就曾宣布通过政策调整,将农作物生物燃料的消费比例限制在5%以内。

  2012年11月13日,欧洲生物质能源协会(AEBIOM)发布了年度统计报告《2012欧洲生物能源展望》,对欧洲能源现状和生物能源发展情况进行了统计分析。2010年欧盟煤炭、石油和天然气的对外依存度分别高达59%、62%和84%。因此大力发展包括生物能源在内的可再生能源对于确保欧盟能源安全至关重要。

  美国也积极资助生物能源。2013年4月4日,美国能源部在华盛顿宣布,将为三个生物能源研究中心提供一个额外5年期由持续的国会拨款的资助。美国能源部长朱棣文表示,“发展下一代的美国生物燃料将会增强我们的国家能源安全,扩大国内生物燃料行业,并产生新的清洁能源工作。它将帮助美国的农民,在农村社区创造巨大财富增长的新机会”。

  巴西是世界第三大生物柴油生产国,年产量约69.4亿升,其中45.9亿升用于出口。巴西政府重视发展生物能源,并将其作为一项重要的经济、科技、能源政策。在巴西2011年至2014年的《科技创新行动计划》中,国家研发创新战略领域有15个,其中生物燃料位列第二位。巴西除了当前以甘蔗生产乙醇外,还研发了另一项生物柴油关键技术。这项技术使蓖麻、棕榈、棉花、大豆、向日葵和玉米等可以大量生产的作物以及动物脂肪等都可作为这种新型生物能源的原料。目前巴西生产生物柴油80%是以大豆为原料。规模化培育微藻是巴西正在研发的另一项先进技术,而以微藻作为生物柴油的原料,则可以环保与炼油一举两得。

  中国国务院新闻办公室在2012年10月24日发布了《中国的能源政策(2012)》白皮书。其中在生物质能部分提到:中国坚持“统筹兼顾、因地制宜、综合利用、有序发展”的原则,发展生物质能等其他可再生能源。在粮棉主产区,有序发展以农作物秸秆、粮食加工剩余物和蔗渣等为燃料的生物质发电。在林木资源丰富地区,适度发展林木生物质发电。发展城市垃圾焚烧和填埋气发电。在具备条件的地区推进沼气等生物质供气工程。因地制宜建设生物质成型燃料生产基地。发展生物柴油,开展纤维素乙醇产业示范。在保护地下水资源的前提下,推广地热能高效利用技术。加强对潮汐能、波浪能、干热岩发电等开发利用技术的跟踪和研发。

相关文章

全国太阳能光化学与光催化会议召开

近日,由中国可再生能源学会、内蒙古大学主办,内蒙古师范大学、内蒙古工业大学协办的第十七届全国太阳能光化学与光催化学术会议在呼和浩特召开。中国科学院院士李灿、赵东元、赵进才、邹志刚、杨金龙、孙立成,中国......

一款光电化学电池将太阳能转化为氢气效率创新纪录

美国莱斯大学工程师将下一代卤化物钙钛矿半导体与电催化剂相结合,研制出了一款耐用、成本效益高且可扩展的光电化学电池,其能以20.8%破纪录的效率将太阳能转化为氢气。最新设备可作为一个化学反应平台,利用太......

培养藻类制造生物燃料未来可期

据《日本经济新闻》最近报道,今年4月,总部位于日本川崎市的千岁实验室公司在马来西亚设立了全球规模最大的藻类培养设施,旨在利用二氧化碳生产生物燃料。该公司的目标是在用培养藻类制造生物燃料时,将其成本控制......

又一光伏企业IPO上市获受理!

2023光伏企业上市潮仍在继续!6月28日,浙江鸿禧能源股份有限公司(下称“鸿禧能源”)创业板IPO获深交所受理。据悉,鸿禧能源本次公开发行不超过5829.34万股,不低于本次发行后总股本的25.00......

霍尔传感器应用于太阳能储能

能源是现代社会存在和发展的基石。随着全球经济社会的不断发展,能源消费也相应的持续增长。随着时间的推移,化石能源的稀少性越来越明显。太阳能是人类取之不尽用之不竭的可再生能源,具有充分的清洁性、安全性、相......

太阳能热化学循环技术制氢研究获进展

太阳能热化学循环分解水制氢具有太阳能全光谱利用、无需氢氧分离、理论能源转换率高等优势,是一种绿色环保的制氢手段。近日,中国科学院电工研究所洁净燃料制备课题组通过载氧材料微观结构的设计和太阳能热化学反应......

太阳能热化学循环技术制氢研究获进展

太阳能热化学循环分解水制氢具有太阳能全光谱利用、无需氢氧分离、理论能源转换率高等优势,是一种绿色环保的制氢手段。近日,中国科学院电工研究所洁净燃料制备课题组通过载氧材料微观结构的设计和太阳能热化学反应......

新涂层解决了过氧化物太阳能电池的最后一个弱点

在太阳能电池领域,过氧化物材质正在迅速取代硅,但它有一个重大缺点--耐久性。现在,一种新的处理方法已被证明可以使过氧化物太阳能电池在使用1000小时后保持其99%的效率。硅太阳能电池可能有几十年的领先......

新涂层解决了过氧化物太阳能电池的最后一个弱点

在太阳能电池领域,过氧化物材质正在迅速取代硅,但它有一个重大缺点--耐久性。现在,一种新的处理方法已被证明可以使过氧化物太阳能电池在使用1000小时后保持其99%的效率。硅太阳能电池可能有几十年的领先......

仅利用太阳能,人造树叶可制成清洁液体燃料

英国剑桥大学化学系研究人员开发了一种太阳能技术,可以将二氧化碳和水转化为液体燃料,并能直接作为临时燃料驱动汽车发动机。研究结果发表在18日的《自然·能源》杂志上。研究人员利用光合作用的力量,只需一步就......