发布时间:2013-09-16 15:43 原文链接: 《Nature》9月最受关注的十篇论文

  英国著名杂志《Nature》周刊是世界上最早的国际性科技期刊,自从1869年创刊以来,始终如一地报道和评论全球科技领域里最重要的突破。其办刊宗旨是“将科学发现的重要结果介绍给公众,让公众尽早知道全世界自然知识的每一分支中取得的所有进展”。近期《Nature》下载论文最多的十篇文章(2013年8月13日 ~ 2013年9月12日):

  肠道微生物群丰富程度对健康的影响

  Nature 500 (2013年8月29日)

  肥胖是心血管病、糖尿病、骨质疏松症和包括一些癌症在内的其他疾病的一个风险因素。必须有其他影响因素存在,才能确定肥胖者会患哪种代谢疾病。本期Nature上两篇论文分析这些因素中的一个所起作用,这个因素就是肠道微生物群的丰富程度。Le Chatelier等人分析了非肥胖者和肥胖者的肠道微生物基因组成,发现在基因和种类丰富程度上存在显著差别。丰富程度较低人士的肥胖程度、胰岛素抗性、血脂异常和炎症程度都有所提高。微生物丰富程度较低的肥胖者比微生物丰富程度较高者更容易增加体重。作者还发现,仅仅对少数几种细菌标记进行分析,就足以区分细菌丰富程度的高低。Cotillard等人对肥胖或超重人士由饮食诱导的体重降低和采用使体重保持稳定的干预措施过程中的肠道微生物特征进行了监测。他们报告说,高纤维食物(如水果和蔬菜)的消耗增加导致细菌丰富程度增加,并且改善一些与肥胖相关的临床症状。该发现支持将饮食与肠道微生物群的组成联系起来的以前的研究工作,并且说明通过适当的饮食也许能实现永久性的改变。

  成年干细胞的表观控制

  Nature 500 (2013年8月15日)

  Linheng Li及同事完成的一项新的研究工作研究的是,造血干细胞中H19“差异化甲基化区域” (H19-DMR) 的删除所产生的效应。DMR已知控制印记基因H19 和 Igf2从H19–Igf2 位点的表达,将H19 的表达限制于母方等位基因,将Igf2的表达限制于父方等位基因。作者报告了一系列由母方表达的生长限制印记基因在“长期造血干细胞”(LT-HSCs) 中、而不是在增殖中的短期HSCs中的优势表达,说明基因组印记在维持静态LT-HSCs中起一个关键作用。

  能自动改变光透射性的智能窗玻璃

  Nature 500 (2013年8月15日)

  本期封面所示窗玻璃代表着一种新型智能涂料的三个限制性光学状态:完全透明、选择性阻断近红外 (NIR)光和在可见光及NIR光透射时都变暗。玻璃窗让光进来,将极端的热和冷留在外面,但随着“电致变色”领域(光的透射性因电化学充电和放电而发生的可逆变化)的进展,它们能够发挥的功能还会比现在多得多。Delia Milliron及其同事演示了由嵌入在一个氧化铌玻璃基底中的锡掺杂的氧化铟纳米晶体组成的一种复合薄膜,这一成果被认为是朝着制造能够大大降低照明和供暖费用的窗户的方向前进了一步。通过在2.5伏的范围内改变所施加的电压,带电的纳米晶体会选择性阻断NIR光,而玻璃则会由于其在“纳米晶体-玻璃” 界面附近重构的键连接而强烈调控可见光。实用的“智能窗户”和其他设备离我们仍然还有一些距离,但这种基于溶液的、被称为“内含纳米晶体的玻璃 (nanocrystal-in-glass)”方法是模块化的,允许对结构和组成进行大范围调整,所以为进一步优化提供了一个可靠平台。封面设计:Creative Services/Lawrence Berkeley National Laboratory。

  由极端气候造成的CO2浓度升高

  Nature 500 (2013年8月15日)

  最新研究表明,极端气候事件(如热浪、干旱和风暴)能部分抵消碳汇,甚至造成碳库的净损失。这篇Perspective文章研究极端气候在全球尺度上对陆地生态系统的碳循环的影响。它得出的结论是:极端气候具有压倒逐渐变暖的“碳汇效应”的潜力,促使碳从积累的碳库中迅速丢失,并在不远的将来增加大气中CO2浓度。

  “蛭形轮虫” 无性生殖假说被证实

  Nature 500 (2013年8月22日)

  “蛭形轮虫”被认为已经以无性方式存在和分化了数百万年,这很奇怪,因为有性生殖的丧失对后生动物来说被普遍认为是走进了一条演化上的死胡同。此前人们仍怀疑它们也许偶尔会进行有性生殖。但在这项研究中,Olivier Jaillon及同事对一种名叫“Adineta vaga”的“蛭形轮虫”的基因组进行了测序,发现其结构与传统减数分裂(与有性生殖相关的细胞分裂类型)不匹配。其基因组已经历了丰富的基因转换,这可能限制了在没有减数分裂时有害突变的积累。多达8%的基因可能来自非后生动物,可能是通过横向基因转移获得的。这些发现为无性演化提供了肯定证据,支持关于“蛭形轮虫”从古以来进行无性生殖的假说。

  人类基因组动态甲基化图

  Nature 500 (2013年8月22日)

  该图所示为人类基因组的动态甲基化情况:图上x轴(左边)相应于在24种人类细胞和组织类型中所观察到的最大甲基化变化,y轴是平均总甲基化,z轴是CpG二核苷酸的密度。胞嘧啶的甲基化(通常发生在CpG上)是基因表达的表观调控的一个常见特征。大多数细胞类型都有相对稳定的CpG二核苷酸甲基化模式,而我们对哪些CpG参与基因组调控的认识是有限的。在这项研究中,Meissner及其同事分析了各种不同人类细胞和组织类型的全基因组“亚硫酸氢盐”序列数据集,发现只有大约22%的CpG在这些类型中改变它们的甲基化状态。这些CpG大多数都位于假想的基因调控元素上,尤其是增强子和“转录因子结合点”上。除了进一步澄清DNA甲基化的分布外,这些具有动态DNA甲基化模式的所选区域还可帮助将效率更高的基因组方法引导到专注于能提供信息的区域,同时也可帮助确定调控元素。封面图片:Bang Wong 和 Michael Ziller。

  心脏和肺的共同发育

  Nature 500 (2013年8月29日)

  心血管和呼吸系统需要精确的共同发育来为血液的加氧形成气体交换界面,但心脏和肺是怎样一起发育得呢?现在,通过利用一系列小鼠模型来进行细胞命运分析和功能丧失分析,Edward Morrisey及其同事在心脏的后极内识别出一组多能心肺祖细胞,它们协调心脏和肺的共同发育。作者提出,心脏和肺已形成了一个复杂的、精确的共同发育过程,来确保陆地动物在出生后能够存活。

  防止复制叉的碰撞

  Nature 500 (2013年8月29日)

  沿一个DNA链向相反方向运动的两个复制叉之间的碰撞,预计会经常发生在具有多个复制起源的真核细胞中。Christian Rudolph等人利用一个细菌系统来观察这种碰撞对细胞的影响。他们发现,碰撞点可被用来独立于一个活性来源重新启动复制,这可能具有潜在的致病效应。 RecG转位酶和几种核酸外切酶能防止这种事件的发生,从而维持基因组的稳定性。

  核糖体亚单元的结构

  Nature 500 (2013年8月15日)

  当翻译被启动时,只有核糖体的小亚单元结合到信使 RNA (mRNA)上。一旦启动密码子被识别出来,通过沿着mRNA转位或“扫描”,大亚单元便会与小亚单元结合重组一个完整的核糖体。Ivan Lomakin 和 Thomas Steitz解决了与“启动因子tRNA”、mRNA以及启动因子eIF1 和 eIF1A形成复合物的真核生物小核糖体亚单元的三个结构。这些结构有助于了解启动因子的贡献、mRNA被扫描的机制以及在核糖体P点上发生的相互作用。

  叶酸受体的结构

  Nature 500 (2013年8月22日)

  叶酸是包括DNA合成、DNA修复和细胞分裂在内的很多生物过程所需的一种必要维他命。“正常”细胞表达数量相对较少的三个叶酸受体维、、和和,但它们在癌细胞中普遍过度表达;为此,它们是新的化疗方法和癌症造影剂的潜在目标。在这篇文章中,作者解决了人叶酸受体在(它介导叶酸向细胞中的吸收)与叶酸结合在一起的形式的XX射线晶体结构。作者测定了它的“配体结合袋”,并且提供了对于以该受体为目标的新型小分子的开发来说应当会有用的数据。

相关文章

Nature:核糖体对合成mRNA的错误读取竟可在体内引起意料之外的免疫反应

信使核糖核酸(mRNA)是告诉体内细胞如何制造特定蛋白的遗传物质。在一项新的研究中,来自英国剑桥大学等研究机构的研究人员发现,细胞的解码机器对治疗用mRNA的错误读取会在体内引起意外的免疫反应。他信使......

高分辨率评估人体细胞内的分子结构动态及药物作用机理

核糖体是细胞内的最丰富细胞器之一,负责将mRNA翻译为蛋白质,是很多小分子药物的作用靶点。核糖体在体外已得到广泛研究,但其在人体细胞翻译活跃过程中的分布仍不清楚。德国马克斯普朗克生物物理研究所利用高分......

苏大核糖体新生可能作为新冠及其他疾病治疗的新靶点

近日,苏州大学李杨欣教授团队在SignalTransductionandTargetedTherapy杂志上发表了一篇题为“Ribosomebiogenesisindisease:newplayers......

研究揭示翻译起始前核糖体的双向扫描过程

核糖体准确地识别起始密码子并起始翻译是决定生物体内蛋白质稳态的重要机制。前人研究发现真核生物翻译前起始复合物(Preinitiationcomplex,PIC,包含核糖体小亚基和多种起始因子)通常从最......

降低核糖体蛋白质翻译功能对延缓衰老具有重要作用

健康长寿是内在遗传与外在环境因素等共同作用的结果。近日,科技日报记者从中国科学院昆明动物研究所获悉,该所近期牵头的一项研究揭示了降低核糖体的蛋白质翻译功能对延缓衰老具有重要作用,这为前沿衰老理论提供了......

单颗粒冷冻电镜技术解析核糖体组装的动态过程

核糖体是所有生物用来合成蛋白质的分子机器,是生命的基本元件。核糖体包括大亚基和小亚基,两个亚基都是由核糖体RNA和大量蛋白质构成的大型复合物。在真核细胞中,核糖体的组装是一个高度复杂、动态的过程,两个......

NCB:李鑫组揭示核糖体介导piRNA的形成

piRNA(PIWI-InteractingRNA)是一类与PIWI蛋白相互作用的非编码小RNA,其长度在24—35nt左右,主要存在于动物的生殖细胞中。piRNA与PIWI蛋白结合形成PIWI/pi......

除了合成蛋白质,核糖体还有哪些重要功能?

【1】elife:核糖体也能调控基因的表达?doi:10.7554/eLife.45396来自Stowers医学研究所的研究人员发现了人体细胞中核糖体的一种新功能,即存在破坏正常mRNA的功能。“很长......

核糖体合成有助于细胞转移或成为癌症治疗备选方法

近日,《NatureCommunications》杂志发表了一项研究成果,Uppsala大学的一项研究表明,核糖体(产生蛋白质的细胞器)的合成有助于细胞转移。研究结果为晚期癌症治疗策略提供了新可能。随......

研究揭示核糖体合成在选择性调控T细胞中发挥重要作用

调节性T细胞(Treg)是一群具有免疫抑制功能的CD4+T细胞亚群,对维持机体免疫系统的稳态平衡至关重要。调节性T细胞依据其活化状态可以分为静息状态的cTreg(centralTreg)和活化状态的e......