发布时间:2009-12-11 11:06 原文链接: “人造树叶”在水杯中制造氢燃料

  推动新能源发展的各种技术越来越受到关注,在全世界都在刮着哥本哈根旋风的时候,这一点更为明显。麻省理工学院的化学家发明了一种催化剂,可以利用太阳光把水变成氢气。如果该过程能扩大规模,它可以使太阳能成为主要的能量来源。更具意义的是,这种技术有可能适用于海水,那么我们的能源问题和水资源问题会有更多的选择。如果这是真的,各国领导人的“老年照”也不至于再被大会组办方拿出来说事,逼他们尤其是发达国家承担更多的环保责任。

 

  “光合作用”将水变成氢燃料

  今年夏天,在一个满是科学家及美国政府能源官员的礼堂里,麻省理工学院的化学教授丹尼尔·诺西拉演示了一段视频:一个从水中产生氧气的反应,就像绿色植物的光合作用。这是一项可能对能源争论产生深远影响的成就,在他研发的催化剂的帮助下,该反应是分解水产生氢气最初也是最困难的一步。

  诺西拉表示,有效地从水中产生氢,能够克服阻碍太阳能成为重要电力来源的主要障碍之一,那就是还没有节省成本的方法来储存太阳能电板收集的能量,以便在晚间或多云天使用。

  太阳能和风能一样都是清洁能源,而且几乎是取之不竭。但是由于没有廉价的储存方式,太阳能不能够大规模地取代化石燃料。

  在诺西拉的方案中,太阳光能够分解水,产生多功能、易储存的氢燃料,之后这些燃料可以在内燃发电机中燃烧,或者在燃料电池中与氧气重新结合。

  事实上,早在20世纪70年代早期,科学家就开始试着模仿光合作用储存来自太阳的能量,但都有反应条件要求苛刻、成本高等限制。

  诺西拉制造的是一种廉价的催化剂,可以在室温、无腐蚀性化学物质的情况下,从水中产生氧气,这与在植物中发现的优良条件相同。另外几种催化剂,包括诺西拉研发的另一种,能够用来帮助完成这一过程并产生氢气。诺西拉认为,有两种利用其突破的方法。第一种,传统的太阳能电板捕获太阳光并产生电力;这些电力会启动一个电解槽设备,该设备使用他的催化剂分解水。第二种方法将采用一套更接近模仿树叶结构的系统。催化剂将与一种特殊的用来吸收阳光的染色分子并排;染料捕获的能量将会驱动水分解反应。两种方法都会将太阳能转化为氢燃料,可以简便地储存并在夜间使用,或者在任何需要的时候。

 

  太阳能的黑暗面

  太阳光是世界上最大的可再生能源潜在来源,但是这种潜力也是不稳定的。在国内,不少太阳能热利用企业都在研发新技术,以便太阳能热水器等产品可以在更多的地方应用,比如寒冷和多雨云地区。

  据悉,即使在美国,太阳能发电也只能满足美国总需求的约1%。大多数太阳能电板都与电网连接,阳光充足时,当太阳能电板以峰值运行时,房主以及企业能够将多余的电力卖给公用事业单位。但是在夜间或者阴雨天气时,他们还要依赖依赖电网。而且,随着太阳能所做贡献的增长,其不可靠性将成为一个日益严重的问题。

  加州伯克力的劳伦斯伯克力国家实验室(L aw renceBerkeleyN ationalLaboratory)研究电力市场的科学家瑞安·怀瑟(R yanW iser)表示,如果太阳能发展到足够供应总电力的10%,公用事业单位就需要解决在高峰需求时出现阴雨天气的问题。“要么需要运营额外的天然气发电厂,能快速启动弥补损失的电力,要么就需要在能量储存上投资。相对来讲,第一个选择更便宜,因为电力储存太昂贵。”

  目前的储存方法都不具备规模效应和经济性。加州理工学院的化学教授内森·刘易斯(N athanLew is)表示,以最便宜的一种方法为例:用电将水抽上山,然后让水通过涡轮机产生电力。将一公斤的水抽高100米大约储存了1千焦耳的能量。相比之下,一公斤的汽油大约储存了45000千焦耳的能量。用这种方法储存足够的能量需要大量的水坝和巨大的水库,每天抽空又填满。而且,在阳光尤其充足的地方,也不一定有大规模水可以利用。

  还有一种常见的方式是电池储存,缺点也是成本高。这种方式会为一个典型的家庭太阳能系统增加一万美元的成本,而且储存的能量有限。刘易斯表示,最好的电池每公斤储存300瓦时的能量,每公斤汽油储存13000瓦时。化学燃料是唯一获得密集能量储存的方法。“在那些燃料中,氢气不仅仅有着比汽油更清洁的潜力,而且按重量算,它能储存更多的能量(大约为三倍)”。

 

  人工产生“光合作用”

  从小到大,随处可见的是,植物能轻易地利用阳光,将足够的材料转变为富含能量的分子。这一个事实嘲笑了寻找新能源技术的化学家几十年。诺西拉研究的方向就是模仿光合作用使得太阳能利用更具备经济性。人工光合作用的领域开始得很快,20世纪70年代早期就有这方面的研究,但是并没有可以推广到应用层面的突破,几十年来,科学家们研究植物吸收太阳光并储存能量的结构和材料,但是并没有找到一个清晰的“路线图”。

  直到2004年,伦敦帝国学院的研究人员确定了一组蛋白质和金属的结构,对于植物从水中释放氧有重要作用。诺西拉表示,“看到这一点后,我们就可以开始设计系统。”

  他表示,人工光合作用能提供一个可行的、储存产自太阳能的能量的方法,使人们的房屋不必依赖电网。在这一计划中,来自太阳能电板的电力驱动电解槽,将水分解为氢和氧。氢被储存起来,在夜间或多云的日子,它被装进燃料电池产生电力供应给电灯、电器甚至电动汽车。在阳光充足的天气,有些太阳能直接使用,绕过制造氢的步骤。

  诺西拉的发现引起了极大关注,不过也有很多质疑的声音。许多化学家觉得其过于乐观,曾是诺西拉导师的托马斯·迈耶表示,尽管诺西拉的催化剂“可能被证明在技术上是重要的,是一个研究发现,不能保证它能够扩大规模或者甚至将它变得实用。”

  另外一种质疑在于,诺西拉的实验室分解水的步骤不能像商业电解槽那样快。系统越快,生产一定量的氢和氧的商业单位就越小,而通常越小的系统越便宜。也有科学家质疑将太阳光变成电力,然后变为化学燃料,再回到电力的整个原理。他们建议,尽管电池储存的能量远少于化学燃料,它们却高效得多,因为在使用电力制造燃料,然后用燃料产生电力的过程中,每一步都浪费能量。“集中在改善电池技术或其他相似的能量储存形式上更好,而不是发展水电解以及燃料电池。”

 

  海水也能成为能源

  不过,瑞士洛桑联邦理工学院化学和化工教授迈克尔·克拉泽尔(M ichaelG ratzel)有可能将诺西拉的发现变为实用。1991年,克拉泽尔发明了一种新型太阳能电池。它采用一种含染料的钌,就像植物中的叶绿素,吸收阳光,释放电子。然而,克拉泽尔的太阳能电池中,电子并不引发水分解反应。取而代之的是,它们被一个二氧化钛薄膜收集,并受外部电路的指示,产生电力。克拉泽尔的设想是,把他的太阳能电池和诺西拉的催化剂整合到一个设备中,捕获来自太阳的能量,并利用它分解水。

  原理是,克拉泽尔的染料将代替诺西拉系统中催化剂围绕其形成的电极。当暴露在阳光中时,染料本身就能产生聚集催化剂所需的电压。“染料就像一根导电的分子线,”克拉泽尔表示,然后催化剂在需要它的地方聚集。催化剂一旦形成,染料吸收的阳光就驱动分解水的反应。克拉泽尔表示,与分开使用太阳能电板和电解槽相比,该设备更高效更廉价。

  诺西拉则在研究的另一可能性,即其催化剂能否用于分解海水。诺西拉研究发现,在最初的测试中,有盐存在的情况下,表现良好,其他正在测试研究,看看它能否处理海水中的其他化合物。如果能够成功,诺西拉的系统就不仅仅能够处理能源危机,它还能帮助解决世界淡水短缺。

  无论如何,人工绿叶都是一个美好愿景,加州大学伯克利分校的化学和材料科学教授保罗·阿利维撒托斯(PaulA livisatos)表示,他也正领导组织劳伦斯伯克力国家实验室的一个项目,用化学方法模拟光合作用。

 

  链接

  “光合作用”是怎样产生氢气的

  在一个复制了光合植物中发现的优良条件的实验装置中,丹尼尔o诺西拉展示了一种简便且有廉价潜力的产生氢气方法。通上电压后,钴和溶液中的磷酸盐(左)聚集在一个电极上,形成一种催化剂,随着电子流出电极,水中释放出氧气。氢离子流过一个膜;另一边,通过镍金属催化剂产生氢气(诺西拉还使用了铂催化剂)。

相关文章

新型催化剂实现高效全分解水制氢

高效全分解水制氢示意图。中国科学院大连化学物理研究所供图中国科学院大连化学物理研究所研究员章福祥团队在宽光谱捕光催化剂全分解水制氢研究中取得新进展。他们发现金属载体强相互作用可显著促进Ir/BiVO4......

科学家开发出新型丙烷脱氢双原子催化剂

近日,中国科学院大连化学物理研究所张涛院士、研究员王晓东、研究员林坚团队与福州大学林森教授等合作,在双原子催化剂的制备及其协同机制的研究方面取得新进展,其开发的新型双原子催化剂表现出优于单原子催化剂的......

院士领衔!研究人员开发出新型丙烷脱氢双原子催化剂

近日,中国科学院院士、大连化学物理研究所催化与新材料研究中心研究员张涛,与研究员王晓东、林坚团队,联合福州大学教授林森等,在双原子催化剂的制备及其协同机制的研究中取得了新进展。该研究开发的新型双原子催......

消除抗生素污染新方法,速率更高、产物更安全!

抗生素在环境中残留会给人类健康带来危害,而在许多抗生素中,包括青霉素、阿莫西林、头孢氨苄等在内的β-内酰胺类抗生素用量占比约为70%。围绕水中β-内酰胺类抗生素的降解难题,近日,中国科学院化学研究所研......

最新研究发现迄今最古老的光合作用结构证据

光合作用是何时、如何起源的?国际著名学术期刊《自然》最新发表一篇演化研究论文称,研究人员在一组17.5亿年的微化石中发现了迄今最古老的光合作用结构证据,这一发现有助于揭示产氧光合作用的演化。该论文介绍......

燃料电池领域新成果,性能有望提升近两倍

燃料电池指把燃料所具有的化学能直接转换成电能的化学装置,隶属于电力工程,是目前颇受关注的发电技术之一。由于燃料电池不受卡诺循环效应(备注1)的限制,因此效率相较于传统发电技术理论上会更高。此外,由于燃......

高效光热协同催化剂被开发,实现空气中二氧化碳的捕获和转化

近日,哈尔滨工业大学化工与化学学院李英宣课题组开发出高效光-热协同催化剂,实现空气中二氧化碳的捕获和转化,研究成果以《在铂负载镍基金属有机框架上运用双活性位点协同作用实现热辅助红外光催化转化大气中的二......

新型太阳能设备可将脏水变成氢燃料和饮用水

研究人员发明了一种漂浮的太阳能装置,可将受污染的水或海水转化为清洁的氢燃料和饮用水。由于该装置可与任何开放式水源协同工作,且无需外部电源,因此可用于资源有限或偏远地区。光催化水分裂技术可将太阳光直接转......

中国科大“机器化学家”利用火星陨石智能创制产氧催化剂

移居火星是人类的梦想,但首先要解决缺乏氧气的问题。火星上存在水资源的可能,为利用太阳能驱动的电催化析氧反应制备氧气提供了机遇。人类无法在无氧的火星环境下长期生存,因而在火星上就地取材创制催化剂成为难以......

液态金属催化剂引领化工工艺变革,助力实现“绿色化学”解决方案

液态金属可能是人们期待已久的“绿色化工”的解决方案。科学家们测试的一项新技术,有望取代自20世纪初成为主流的能源密集型化学工程工艺。9日发表在《自然·纳米技术》上的一项创新研究,摆脱了由固体材料制成的......