发布时间:2017-12-26 17:29 原文链接: 盘点2017年CRISPR技术突破

图片来源于网络  

  CRISPR技术日新月异,研究人员不仅为这种精确且相对易于操作的基因编辑技术寻找新的应用,而且也在进一步的完善这种技术,赋予它更多新的功能,今年CRISPR引人注目的技术突破包括:

  RNA编辑

  虽然人体很多疾病是来自于DNA,但是由于基因承载着生命最根源的信息,因此直接对DNA进行编辑会出现安全和伦理上的问题。而RNA编辑却不同,通过编辑RNA能暂时性的纠正DNA翻译的信息,让蛋白质接收到正确的信息,达到治疗的效果,这可能是更加有效的一种临床应用方式。

  今年Broad研究院的张锋研究组将RNA编辑酶融合到靶向RNA的Cas蛋白中,这样研究人员就能编辑人体细胞中特定的核苷酸了,张锋研究组将这种方法称为RNA Editing for Programmable A-to-I replacement (REPAIR), 这一技术不仅可以用作研究工具,而且可作为由突变引发的疾病的临时治疗方法。

  CRISPR这一明星技术在基因组DNA编辑方面发挥了许多重要的作用,虽然其主要应用于DNA,但一些新的研究已将它的范围扩展至RNA编辑。去年Nature Methods评选出的年度技术中就有将革命性的CRISPR基因编辑技术用来靶向RNA,其中的一大进展就是麻省理工张锋研究组关于能够靶向和降解RNA的一种RNA引导酶——C2c2(也被称为Cas13a)功能特征的研究。

  在此基础上,张锋研究组在10月5日Nature杂志上又公布一项成果,证实了切割RNA的Cas13a酶能够特异性地降低哺乳动物细胞中的内源性RNA和报告RNA水平。并指出这种方法比RNA干扰(RNAi)的效率更高,能被用于抑制细胞RNA靶标,结合和富集感兴趣的RNA,以及通过序列特异结合对细胞内的RNA进行成像。

  研究人员发现切割RNA的Cas13a酶,能够特异性地降低哺乳动物细胞中的内源性RNA和报告RNA水平。而且他们也指出与在细菌中不同的是,Cas13a在人细胞系中,仅仅只是靶向gRNA指定的RNA,细胞中所有其它的RNA保持完整。他们分离得到了Leptotrichia wadei的Cas13a酶,构建出了一种双质粒RNA靶向CRISPR系统,这一系统能在不同的质粒上表达导向RNA(gRNA)和Cas13a基因,其中Cas13a基因含有一种经过改造的核定位序列。在人细胞系中,这种CRISPR-Cas13a系统能高效地切割报告质粒中转录的RNA和三种内源性基因转录的RNA。

  在CRISPR出现之前,RNAi是调节基因表达的理想方法。但是Cas13a一大优势就在于其具有更强的特异性,而且这种本身来自细菌的系统对哺乳动物细胞来说,并不是内源性的,因此不太可能干扰细胞中天然的转录。相反,RNAi利用内源性机制进行基因敲除,对本身的影响较大。

  我们期待这一技术有一天可以用于治疗多种疾病。

  张锋10月连发Science,Nature文章:CRISPR下一个技术趋势—RNA编辑

  CRISPR大牛再发Nature子刊文章:破解RNA靶向CRISPR酶Cas13a的作用机制

  人类胚胎基因编辑

  继2015年中山大学一个研究组首次编辑了人类胚胎的基因组之后,今年这一研究组又在活的人类胚胎中纠正了导致乙型地中海型贫血(β-地中海贫血)的单核苷酸突变,成功去除乙型地中海型贫血致病基因,为世界首创。

  这一胚胎细胞由实验室通过克隆技术培养,原取自乙型地中海型贫血患者的组织,并没有被移植到人体中。

  碱基编辑是基因编辑技术 CRISPR 的进一步拓展,CRISPR 技术会对 DNA 产生破坏,当身体尝试修复时,会使一系列基因指令失效,而黄军就团队使用的“化学手术”副作用则要小很多。

  在人类已知的遗传变异病症中,大约有三分之二为点突变,碱基编辑有能力直接进行修正,或者根据研究需要,复制出很多的致病突变。

  争端之下,人类胚胎基因编辑该怎么走?

  Nature头条:包括中国学者在内的研究组利用CRISPR成功实现人体胚胎编辑

  纳米粒子递送

  尽管CRISPR-Cas的研究应用比比皆是,但在治疗上的应用存在一大挑战:安全有效的递送系统。

  今年,麻省理工学院的研究人员研发出了一种CRISPR基因组编辑工具的新传递系统,能特异性修饰小鼠基因。这一系统利用纳米颗粒携带CRISPR组件,无需使用传统的病毒传递,研究人员利用这一系统,成功的在约80%的肝细胞中切除了基因,这是CRISPR在成年动物中取得的最佳成功率。

  相关人员表示:“这项研究真正令人兴奋的是,我们证明了可以通过制造纳米颗粒,永久的特异编辑成年动物肝脏中的DNA。”


相关文章

新里程碑!基因编辑疗法首获人体概念验证,永久降低心血管疾病风险!

日前,VerveTherapeutics首次公布了其单碱基编辑疗法VERVE-101,在正在进行的1b期临床试验heart-1中获得的人体概念验证数据。数据显示,这种创新疗法在家族性高胆固醇血症(He......

新突破!CRISPR技术成功实现高通量筛选,杀灭癌细胞能力极大增强!

杜克大学(DukeUniversity)的研究人员利用CRISPR技术对人类免疫细胞中的基因功能进行了高通量筛选,并发现基因组的单个主调节器可用于重新编程T细胞中数千个基因的网络,并大大增强癌细胞的杀......

新突破!CRISPR技术成功实现高通量筛选,杀灭癌细胞能力极大增强!

杜克大学(DukeUniversity)的研究人员利用CRISPR技术对人类免疫细胞中的基因功能进行了高通量筛选,并发现基因组的单个主调节器可用于重新编程T细胞中数千个基因的网络,并大大增强癌细胞的杀......

新突破!CRISPR技术成功实现高通量筛选,杀灭癌细胞能力极大增强!

杜克大学(DukeUniversity)的研究人员利用CRISPR技术对人类免疫细胞中的基因功能进行了高通量筛选,并发现基因组的单个主调节器可用于重新编程T细胞中数千个基因的网络,并大大增强癌细胞的杀......

镁离子与CRISPR基因编辑酶相互作用的高分辨率图像诞生!

被称为CRISPR的基因编辑技术已经在农业、健康研究等领域带来了革命性的变化。在发表在《自然催化》杂志上的一项研究中,佛罗里达州立大学的科学家们制作了第一张高分辨率的延时图像,显示了当CRISPR-C......

俄罗斯研制出可用于外太空温度测量的纳米粒子

俄罗斯圣彼得堡国立大学科研人员研发出发光纳米粒子,可用于超低温高精度温度测量。科研人员表示,掺有钕离子的氧化钒和氧化镥纳米粒子具有磷光体特性,其能够吸收入射到其上的红外辐射并重新发射,这种辐射的性质很......

一文带你了解基因编辑行业的竞争现状

基因编辑技术是一种在生物体内对基因进行编辑和修改的技术,其应用范围广泛,包括但不限于医学、农业、生物技术等领域。随着基因编辑技术的不断发展,越来越多的企业和研究机构开始涉足这一领域,竞争也日趋激烈。本......

Exacel疗法通过FDA大考,基因编辑疗法前景可期

2012年,CRISPR基因编辑横空出世。当时,所有人都觉得这将会是生物科技领域最强大的工具之一,然而,在疗效与安全性问题的双重困扰下,CRISPR基因编辑exa-cel疗法在临床中运用步履维艰。如今......

CRISPR创新“发现和替换”基因组编辑,基因治疗被重新定义

基因组编辑,特别是CRISPR-Cas9方法,为严重联合免疫缺陷(SCIDs)和其他遗传疾病提供了革命性的解决方案。巴伊兰大学的研究人员通过他们的GExHDR2.0策略加强了这种方法,旨在实现精确的基......

全球首个CRISPR基因编辑疗法迎来关键时刻:FDA顾问小组积极回应,股价大涨

近日,基因编辑公司CRISPRTherapeutics(CRSP.US)的股价在美股市场表现强劲,周三盘前上涨约10%,开盘初期延续强劲涨势。这一涨势的背后,是该公司与美国食品药品管理局(FDA)顾问......