发布时间:2021-02-05 15:17 原文链接: 日本团队用单分子动力学解析DNA杂交基本过程

  

  一项发表在《化学科学》(Chemical Science)上的研究成果显示,日本东京理工大学团队使用扫描隧道显微镜(STM)测量单分子电导率的变化来探索DNA“杂交”(由两条单链DNA形成双链DNA)。

  该研究团队将单链脱氧核糖核酸(ssDNA)附着在由金制成的扫描隧道显微镜尖端,并通过一种称为“吸附”的过程,使用一层平坦的金膜将互补链粘附在其上。

  然后,他们在涂覆的扫描隧道显微镜针尖和金表面之间施加偏置电压,并使针尖非常靠近表面而不接触。反过来,由于一种被称为“量子隧道”的过程,这又允许电流流过其间的空间。研究人员监测了DNA链相互作用时隧道电流的时间变化。

  研究小组获得了形似梯形的电流轨迹。当金表面未用ssDNA修饰或用非互补链修饰时,梯形轨迹不会形成。

  在此基础上,研究人员将这种轨迹归因于双链DNA (dsDNA)的形成,双链DNA是由扫描隧道显微镜尖端和表面的ssDNA杂交产生的。研究人员将电流的突然减少归因于热扰动引起的dsDNA的击穿或“去杂交(dehybridization)”。

  该小组随后使用实验结果和分子动力学模拟研究了去杂交和杂交过程的动力学(反应的时间演变)。前者揭示了一个与DNA浓度无关的平台电导,证实了当前的测量反映了单分子电导,而后者表明形成了一个部分杂交的DNA中间体,仅靠电导无法检测到。

  有趣的是,对于高浓度的DNA样品,杂交效率更高,这与以前用大体积ssDNA溶液进行的研究结果相矛盾,团队将这一观察归因于他们的研究中缺乏整体扩散。

  研究人员表示“这些新的见解应该有助于提高许多基于DNA的诊断的性能......该方法可以扩展到研究各种单分子之间的分子间化学反应,从而能够从机理上理解化学反应,并从单分子的角度发现新的化学反应。”


相关文章

我国科学家发现DNA柔性的奥秘,有助于抗体药物研发

4月24日,刊登在国际学术期刊《细胞》上的一篇合作研究论文引起了科学界的广泛关注。该篇文章由中国科学院分子细胞科学卓越创新中心的孟飞龙研究组和上海交通大学医学院上海市免疫学研究所的叶菱秀研究组联合完成......

“X”档案破解

据最新一期《自然·结构与分子生物学》杂志报道,荷兰癌症研究所研究人员揭示了为什么人的DNA是X形的,并发现了一种普遍存在的机制,通过这种机制,细胞可决定DNA的形状。这一发现或对了解人类细胞行为产生更......

甲基乙二醛:一种新型的DNA甲基化上游调节因子

甲基乙二酮(MG)是一种高反应性的二羰基分子。在糖酵解癌症细胞中,MG主要由磷酸二羟丙酮和3-磷酸甘油醛沿糖酵化途径的自发转化形成。细胞MG浓度显著受乙二醛酶系统的解毒活性调节,乙二醛蛋白酶1(GLO......

Cell:揭示DNA柔性在抗体基因超突变中的生理功能

4月24日,《细胞》(Cell)以ResearchArticle的形式,在线发表了中国科学院分子细胞科学卓越创新中心孟飞龙研究组等撰写的题为MesoscaleDNAFeatureinAntibody-......

2023年,基因组学革命“狂飙”到了哪一步?

2023年4月25日是DNA双螺旋结构发现70周年纪念日。70年前科学家的这一发现,将生物学研究带入分子时代。携带着生命遗传信息的DNA,以如是美妙的姿态,于纳米级的空间内,传递着生物世界变化万端、生......

解决抗体研究40年难题Cell:揭示抗体基因DNA的“刚柔相济”

体细胞超突变(SHM)由激活诱导胞苷脱氨酶(AID)引发,在抗体编码序列中产生突变,从而使亲和力成熟。为什么这些突变本质上集中在三个非连续互补决定区(CDR)仍然是一个谜。2023年4月24日,中国科......

中国蛇类DNA条形码参考数据集发布

中国科学院昆明动物研究所(以下简称昆明动物所)研究员车静课题组联合国内科研团队开展合作,首次系统性构建了中国蛇类DNA条形码参考数据集(COI),对中国蛇类多样性进行了评估。日前,相关研究成果发表于《......

新方法可精确控制蛋白质激活过程

据4月17日发表在《自然·化学》杂志上的一项研究,美国华盛顿大学医学院研究团队使用短暂的闪光将经过化学修饰的蛋白质片段连接在一起,形成功能性整体。这种名为光激活SpyLigation的新方法可打开通常......

上海交大左小磊团队开发基于DNA框架的多维分子分类器

可准确反映患者生理病理状态的分子分型是发展精准医学的基础。近年来,研究者利用DNA分子反应发展了一系列基于单一维度生物标志物的分子分类器,例如mRNA分子分类器以及microRNA分子分类器。但疾病的......

RedoxBiology:DNA修复代谢产物可以治疗骨骼肌损伤

骨骼肌重塑是维持肌肉内环境平衡和运动能力的关键。在小鼠和人类中,肌肉重塑反应在体育锻炼后迅速开始,从而产生ROS,而线粒体是骨骼肌收缩期间ROS的主要来源之一。体育运动导致的ROS氧化蛋白质、脂肪和核......