发布时间:2019-07-08 13:39 原文链接: 手性超分子组装及其圆偏振发光应用研究新进展

  近年来,圆偏振发光材料受到极大关注,成为手性发光材料领域新的研究热点。圆偏振发光(CPL)是指手性发光体系发射出具有差异的左旋和右旋圆偏振光的现象。相较于研究基态手性结构信息的圆二色性(CD)不同,CPL反映的是手性发光体系的激发态结构信息,它在3D 显示、信息存储与处理、CPL 激光、生物探针、光催化不对称合成等领域具有广泛的应用前景。如何高效获得手性发光体系并实现发光性能的有效提升与调控是圆偏振发光材料领域的挑战性问题。

  在国家自然科学基金委、科技部和中国科学院的支持下,中科院化学研究所胶体界面与化学热力学重点实验室刘鸣华研究团队围绕手性超分子组装及其应用开展了系统研究(Chem. Rev. 2015, 115, 7304-7397)。近几年来,他们将手性超分子组装策略应用于圆偏振发光材料的设计合成与高效调控,并取得系列进展(Angew. Chem. Int. Ed. 2019, 58, 785-790; Angew. Chem. Int. Ed., 2019, 58, 844-848)。

  最近,他们在圆偏振发光材料手性反转与切换方面取得新进展。他们设计合成了基于芘甲酸和组氨酸的π-凝胶因子PyHis,单晶结构显示,两个芘环以近乎垂直的角度形成T-型堆积的二聚体,进一步通过酰胺键和咪唑基团之间的氢键,最终形成尺寸均匀的纳米纤维结构并发射右旋圆偏振荧光。受到Zn蛋白酶中组氨酸与Zn离子丰富多样的配位模式和配位数的启发,研究人员采用Zn离子配位组装的策略,发现PyHis与Zn离子形成了较为少见的五配位络合物,并且芘环之间形成了较强的π-π堆积。配位和π-堆积的协同作用使得PyHis的组装路径发生显著改变,纳米纤维结构完全转化为纳米球并发射左旋圆偏振荧光。他们进一步通过加入络合能力更强的EDTA作为竞争配体,从而实现了组装体的重置,通过这种配位-解离的策略,可以实现圆偏振荧光手性信号的多次可逆切换。该工作为发展基于π-凝胶的智能响应型圆偏振发光材料提供了新思路。相关研究成果发表在Angew. Chem .Int. Ed. 2019, 58, 5946-5950。


相关文章

美国研发出一种手性拓扑超导体

美国宾夕法尼亚州立大学的科研人员推出了一种手性拓扑超导体(ChiralTopologicalSuperconductor),对于推进量子计算和探索理论手性马约拉纳粒子(Majoranaparticle......

实力认证,禾信高分辨质谱助力我国科研团队登上国际顶级期刊

化石燃料是现代社会主要能源之一,但其导致的大量二氧化碳排放也引发了环境问题,光催化CO₂还原是缓解这一问题的策略之一。通过捕获CO₂并将其转化为有价值化学品和燃料,如CO、CH4、CH₃OH等,该策略......

国外研究表明手性磁体材料可提高类脑计算适应性

英国伦敦大学学院、伦敦帝国理工学院领导的国际合作研究表明,利用手性(扭曲)磁体的内在物理特性,可提高机器学习任务适应性,大幅减少类脑计算的能源使用。研究结果发表在《自然·材料》杂志上。传统计算由于独立......

上海有机所不对称远程炔丙基取代反应研究获进展

近年来,过渡金属催化的不对称η3-取代反应已成为构建手性不饱和片段的重要途径。中国科学院上海有机化学研究所何智涛课题组致力于过渡金属参与实现的非经典η3-取代反应的研究,并探索了一系列催化转化策略。近......

突破手性结构的极限

密歇根大学领导的一个研究小组已经证明,由纳米粒子自我组装的微米级"领结"可以形成一系列精确控制的卷曲形状。这一进展为简单地创造与扭曲的光线相互作用的材料铺平了道路,从而带来在机器视......

手性亚砜亚胺催化不对称合成研究取得新进展

手性亚砜亚胺具碱性氮原子且在极性溶剂中具良好的溶解性,是一类有潜在应用价值的生物电子等排体(图1)。合成此类化合物的主要策略是基于手性底物的立体专一性转化,如手性亚砜的亚胺化、手性亚砜亚胺的氧化和手性......

深圳先进院报道脚手架蛋白相分离调控微生物细胞极性

细胞不对称性(也称细胞极性)广泛存在于动植物和微生物细胞中,其基本特征是母细胞在分裂前发生细胞极化,从而不对称分裂生成两个不同命运的子代细胞。细胞极性是生命世界产生多样性的根本原因,在细胞生长、增殖、......

化学所发展出界面超分子手性传递分子机理研究新方法

手性在自然界中无处不在。界面所具有的非中心对称性为分子在界面的聚集和组装过程产生对称性破缺创造了先天条件,因此相比于体相,研究界面手性传递、自组装手性动力学对于探索手性起源、探寻生命起源、制备手性材料......

化学所发展出界面超分子手性传递分子机理研究新方法

手性在自然界中无处不在。界面所具有的非中心对称性为分子在界面的聚集和组装过程产生对称性破缺创造了先天条件,因此相比于体相,研究界面手性传递、自组装手性动力学对于探索手性起源、探寻生命起源、制备手性材料......

我国发展出界面超分子手性传递分子机理新方法

手性在自然界中无处不在。界面所具有的非中心对称性为分子在界面的聚集和组装过程产生对称性破缺创造了先天条件,因此相比于体相,研究界面手性传递、自组装手性动力学对于理解手性起源、探寻生命起源、制备手性材料......