发布时间:2021-06-21 16:38 原文链接: 细胞衰老过程中染色质三维结构的变化

  细胞衰老是细胞非常重要的生命过程,与疾病发生、个体衰老有着密切的关系。通常认为细胞衰老可以由内在或外在的压力引起,与细胞内持续的DNA损伤密切相关。大量的已有研究表明,无论是个体衰老还是细胞衰老都与细胞中异染色质状态的改变有着密切的关系,其中,衰老过程中一个重要的现象是异染色质的丢失。同时,保持异染色质稳定对于减缓衰老进程有着重要积极的作用。但是,细胞衰老过程中,异染色质大规模丢失与其它表观遗传特征以及与基因转录调控之间的关系并不清楚。

  2021年6月17日,清华大学汪小我教授与颉伟教授合作在Genome Research在线发表了题为The loss of heterochromatin is associated with multiscale three-dimensional genome reorganization and aberrant transcription during cellular senescence 的研究性论文。该工作通过多组学大数据的生物信息整合分析,发现了细胞衰老过程中异染色质的大规模丢失伴随着染色质开放性和多层次的染色质三维结构的变化,并且在异染色质丢失区域出现了异常基因表达泄露(gene expression leakage)的现象。这一研究丰富了我们对衰老细胞异染色质状态的认识,建立了衰老细胞中异染色质开放性、三维基因组结构、转录调控之间的联系。这些发现对于后续识别衰老细胞和干预衰老过程的研究有着重要参考意义。

  

  研究首先通过Western blot确认了实验中的衰老细胞出现异染色质丢失的现象,然后利用Hi-C、RNA-seq、ChIP-seq和 ATAC-seq等高通量测序技术刻画了四种细胞状态 (增殖、静默、衰老、深度衰老) 的染色质结构、开放性以及转录水平(图1)。

  

  图1 实验设计

  研究发现,虽然衰老细胞异染色质出现丢失,但是H3K9me3标记的异染色质区域在衰老后并没有出现大规模A/B compartment翻转现象,基本上维持了稳定的A/B compartment结构。但是这些区域近端、远端甚至是染色体之间的相互作用都有显著的增强。比如,有些异染色质区域在细胞衰老之后还形成了新的三维空间环状loop结构,这与衰老细胞中异染色质区域CTCF结合位点开放性增强相关(图2)。而出现A/B compartment翻转的区域主要富集在高H3K27me3水平的区域里,具有细胞类型特异性。这些现象也佐证了A/B compartment与TAD (loop) 之间相对独立的关系。

  

  图2 衰老细胞异染色质中出现新的loop结构

  伴随着异染色质区域开放性和相互作用增强,原来大量不表达的基因在衰老细胞中出现基因表达泄露。尽管这些基因的表达丰度很低,但能够在多个不同类型衰老细胞的公共数据集和单细胞数据中得到验证。揭示了衰老细胞在染色质结构和转录调控方面的异质性改变(图3)。

  

  图3 衰老细胞染色质结构与转录调控的特征

  本研究通过整合多组学数据,揭示了衰老过程中基因组异染色质区域大规模的表观遗传改变和转录异常,提示了异染色质状态改变与衰老之间的密切关系,为阐明衰老伴随的染色质结构和基因调控变化和作用机制提供了新视野,为理解人类衰老和防治衰老相关疾病提供了新的思路。

  清华大学汪小我教授与颉伟教授为论文的共同通讯作者,清华大学博士生张祥林、博士后刘雪会、博士后杜振海为论文的共同第一作者。

相关文章

麻省理工学院革新细胞成像技术:观察活细胞内部活动的新方法

利用可开关的荧光标签,麻省理工学院的工程师们可以研究细胞中的分子如何相互作用来控制细胞的行为,研究人员开发出一种方法,可以同时观察到多达七种不同的分子,甚至有可能观察到比这更多的分子。活细胞会受到多种......

《自然》重磅:细胞衰老、癌变和死亡竟同源!科学家首次发现细胞凋亡程序参与衰老,为抗癌抗衰药的研发打开新方向

2015年初,英国格拉斯哥大学StephenW.G.Tait团队报告了一个不同寻常的发现。当他们将新型成像系统对准低剂量细胞凋亡剂处理的细胞时,他们意外地发现,标志着细胞要快速死亡的“线粒体外膜透化”......

科学家揭示体外组装和体内染色质纤维普遍折叠模式

9月13日,中国科学院生物物理研究所朱平研究组在国际期刊《细胞报告》(CellReports)在线发表论文,利用冷冻电子断层三维成像方法,揭示了体外组装和体内染色质纤维一种普遍存在的双螺旋折叠模式。在......

NatureMethods:北大汤富酬团队揭示单个细胞内高阶染色质结构

调控基因组元件的高阶三维(3D)组织为基因调控提供了拓扑基础,但尚不清楚哺乳动物基因组中的多个调控元件如何在单个细胞内相互作用。2023年8月28日,北京大学汤富酬团队在NatureMethods(I......

生物物理所揭示染色质组装因子CAF1介导核小体装配的结构基础

在真核细胞分裂过程中,染色质结构的重新建立对于维持基因组完整性和表观遗传信息传递至关重要。DNA复制一方面破坏母链DNA的亲本核小体,另一方面新生核小体必须在DNA子链上重建。染色质组装因子CAF-1......

中国科学家揭示蛋白质氧化折叠在干细胞衰老中的作用

我国西部地区最大抽水蓄能电站开工建设。我国西部地区最大的抽水蓄能电站——青海哇让抽水蓄能电站于8月6日正式开工建设。据介绍,哇让抽水蓄能电站位于青海省海南藏族自治州贵南县境内,临近海南州戈壁新能源基地......

中国科学家揭示蛋白质氧化折叠在干细胞衰老中的作用

8月3日,中国科学院生物物理研究所王磊、王志珍课题组和中国科学院动物研究所刘光慧课题组合作,在国际学术期刊《欧洲分子生物学组织报告》(EMBOReports)发表封面文章,揭示蛋白质氧化折叠在干细胞衰......

揭秘早期哺乳动物的发育过程

由于小鼠的易实验性和强遗传性,其一直是生物医学研究中使用广泛的动物模型。但是,胚胎学研究发现,小鼠早期发育的许多方面与其他哺乳动物不同,从而使有关人类发育的推论复杂化。英国剑桥大学等研究团队合作构建了......

新进展!构建新型双碱基编辑器

碱基编辑器是基于CRISPR/Cas9发展的新一代基因组编辑技术,可诱导单个碱基的突变,而鲜有关于特异性介导A-to-G和C-to-G双突变的碱基编辑工具的研究。此外,关于碱基编辑系统与染色质环境之间......

首个果蝇细胞衰老图谱公布

了解身体如何衰老是一个重要的研究领域。美国贝勒医学院、斯坦福大学等机构研究人员在《科学》杂志上发表了首个果蝇细胞衰老图谱(AFCA),详细描述了果蝇中163种不同细胞类型的衰老过程。分析表明,体内不同......