发布时间:2023-01-05 11:49 原文链接: 遗传发育所在黍子的基因组研究中取得进展

  多倍化在植物进化过程中反复发生,呈现出多倍体化-二倍体化的循环模式,所有被子植物至少经历了一次多倍化事件。多倍体形成之后,通常会迅速进入二倍体化的过程,最终演变成二倍体。多倍化后的基因组休克和二倍化可能导致亚基因组优势,即显性基因组保留更多的祖先基因并显示更高的同源基因表达。然而,二倍体化的分子机制以及亚基因组优势如何建立目前仍不清楚。

  异源四倍体黍稷(Panicum miliaceum L.)起源于中国,是世界上最早驯化的作物之一。然而,由于缺乏二倍体祖先的信息,关于黍稷基因组的多倍体研究仍然知之甚少。

  针对上述问题,中国科学院遗传与发育生物学研究所研究员陈明生团队构建了一个异源四倍体黍稷栽培品种“晋黍7号”的全基因组精细序列图谱。由于黍稷的二倍体祖先目前还未确定,其亚基因组的鉴定具有一定的挑战性。该研究基于进化距离的方法,以黍稷二倍体近缘物种Panicum hallii基因组作为参考,将黍稷的18条染色体区分为A和B两套亚基因组。通过对其亚基因组间同源基因对的同义替换率和转座子的分歧度的估算,黍稷两个二倍体祖先的分歧大约发生在480万年前,而黍稷的异源四倍体化大约发生在48万年前,表明黍稷是相对较新的异源四倍体。对两个亚基因组的比较分析发现,B亚基因组比A亚基因组更大,这是由于两个亚基因组的祖先发生分歧后,B亚基因组祖先中积累了更多的LTR反转录转座子。同时,该研究发现,富含转座子的B亚基因组中,与转座子相关的偏向性突变的积累导致其发生了更多的基因丢失。尽管在黍稷亚基因组间的同源基因表达上没有观察到明显的亚基因组优势,但研究发现,在二倍体近缘物种P. hallii中表达较低的基因,在黍稷的二倍体化过程中往往会优先丢失。这些结果表明,异源四倍体黍稷处于二倍化的早期阶段,亚基因组优势正在建立,这一过程中的突变可能更多地发生在标记为较低表达水平的基因上。

  相关研究成果以Biased mutations and gene losses underlying diploidization of the tetraploid broomcorn millet genome为题于2022年12月27日在线发表在The Plant Journal上。相关研究工作得到国家自然科学基金和植物基因组学国家重点实验室的资助。

image.png

图1 黍稷四倍体形成与转座子进化模型。首先,AA和BB从一个共同的祖先分化而来。由于它们所处的细胞核环境不同,转座子在基因组中的进化速率也不同。然后,AA和BB发生融合并形成一个四倍体,新形成的四倍体基因组中的A和B亚基因组处于相同的细胞核环境中,转座子的进化速率趋于相同。

image.png

图2 黍稷亚基因组同源基因的丢失。A) 基因丢失模式;B)不同的基因丢失模式在两个亚基因组中发生的百分比;C)黍稷与P. hallii的同源基因在穗中的基因表达。

相关文章

昆明植物所完成勐腊毛麝香高质量基因组的组装和萜类物质合成相关基因鉴定

近年来,热带传染病登革热盛行,对热带地区群众的生命健康造成威胁。然而,目前用于大面积喷洒以趋避和杀灭蚊虫的化工合成药品对人体和环境均存在二次伤害的风险,因而亟需发展能够有效驱避埃及伊蚊的天然绿色驱蚊产......

无缺口组装!水稻完整参考基因组发布

近日,中国农业科学院深圳农业基因组研究所联合海南崖州湾实验室、中国水稻研究所、中国农科院作物科学研究所和扬州大学等多个单位发布完整的水稻参考基因组,实现了全基因组所有染色体端粒到端粒无缺口组装,为水稻......

破解埃博拉病毒基因组从头起始复制的分子机制

9月12日,中国科学院微生物研究所施一、齐建勋、高福院士团队,在《自然》(Nature)上,发表了题为MolecularmechanismofdenovoreplicationbytheEbolavi......

遗传年龄或可评估自闭症和精神分裂症患者脑组织衰老速度!

自闭症(ASD)和精神分裂症(SCZ)是常见的慢性精神疾病,在行为、遗传学和神经病理学等方面存在相当多的重叠特征,提示自闭症和精神分裂症可能存在共同的神经发病机制。衰老与表观遗传效应的动态变化密切相关......

我国科研团队发布水稻完整参考基因组

水稻是重要的粮食作物,其基因组组装对水稻育种意义重大。23日,记者从中国农业科学院深圳农业基因组研究所获悉,该所联合崖州湾实验室、中国水稻研究所、中国农科院作物科学研究所和扬州大学等多个单位发布完整的......

转移性肿瘤与原发性肿瘤之间的基因组差异是什么?

肿瘤转移性扩散涉及肿瘤细胞从原发性肿瘤中分离、迁移、二次组织定植和生长的多步骤过程。分析原发性肿瘤和转移性肿瘤之间的基因组差异,并量化它们对治疗耐药性的影响有助于研究和利用治疗干预措施,建立更有效、更......

重大突破!染色质扩展显微镜技术可破解基因组秘密

开启或关闭基因的能力是我们在细胞、个体甚至在健康和疾病方面观察到的多样性的基础。这个过程被称为基因转录,涉及到将储存在我们的DNA中的信息转化为RNA。在此之前,科学家们一直依靠不精确的图解和间接的实......

人工智能快速解码脑癌基因组

美国哈佛大学医学院团队设计了一种人工智能(AI)医疗工具,可快速解码脑肿瘤的DNA,以确定其在手术过程中的分子身份,而现有方法需要几天甚至几周的时间才能获得这些关键信息。研究成果7日发表在《医学》杂志......

新进展!构建新型双碱基编辑器

碱基编辑器是基于CRISPR/Cas9发展的新一代基因组编辑技术,可诱导单个碱基的突变,而鲜有关于特异性介导A-to-G和C-to-G双突变的碱基编辑工具的研究。此外,关于碱基编辑系统与染色质环境之间......

“画蛇添足”并非无迹可寻,远古时期的蛇是有脚的

成语有云:画蛇添足,形容做事多此一举。但蛇真的无脚吗?爬行动物专家认为,蛇的祖先是蜥蜴,在远古时期,蛇是有脚的,只是在演化过程中慢慢失去了。近日,这一说法得到了进一步证实。经过5年的研究,基于大规模多......