发布时间:2021-01-21 11:13 原文链接: 一种针对活细胞膜界面膜蛋白动力学测量的高精度方法

  细胞膜既是保护细胞的重要屏障,也是细胞与外界物质和信息交换的界面。空间总厚度约为10纳米的细胞膜(含突出于细胞膜两侧的膜蛋白结构)可被视为准二维凝聚相体系。磷脂双层膜及镶嵌于膜上的众多蛋白质,整体上具有“多重界面复杂流体”的行为和特征。膜本身的二维流动性和三维起伏涨落为膜蛋白动力学的精密测量造成干扰。膜蛋白动力学的实时精密测量,是膜生物物理领域的具有挑战的问题。近年来,为解决这一难题,中国科学院物理研究所SM4组发展出针对体外生物膜模型系统的单分子表面诱导荧光衰逝技术(SIFA)(Nature Communications 7: 12906, 2016)和脂质体包裹荧光悠逝测量技术(lipoFRET)(Angewandte Chemie International Edition 58: 5577, 2019),分别实现了固体表面支撑的二维脂双层膜界面和三维脂质体双层膜界面上的生物大分子跨膜动力学的高精度观测,可直观展现跨膜肽以及膜蛋白等在垂直生物膜方向上的动态过程,并由此获取了相关生物大分子在跨膜过程中的关键动力学信息,为在分子层面揭示生物膜界面跨膜输运的动力学机理奠定重要基础。上述“干净”的物理模型系统,未能有效应用于复杂的活细胞膜研究。活细胞中的生物界面体系组分更为复杂,蕴含着更加丰富且重要的生命过程。

  近日,中国科学院物理研究所/北京凝聚态物理国家研究中心软物质物理实验室博士生侯文清、博士后马东飞和贺小龙等在副研究员陆颖和研究员李明的指导下,以前序发展的高精度物理测量方法为基础,发展了专门针对活细胞膜界面膜蛋白动力学测量的高精度方法,进而对其机理进行深入研究。该方法命名为细胞外环境填充荧光受体的荧光共振能量转移(FRET with quenchers in extracellular environment,简称queenFRET)。该方法应用单点对多点的荧光分子间共振能量转移(FRET)原理,通过测量荧光标记分子的荧光强度或荧光寿命,可精确观察标记位点的插膜深度随时间的变化。该方法以好于1纳米(约等于细胞膜总厚度的十分之一)的精度探测细胞膜上单个膜蛋白的动力学。这是迄今为止检测活细胞膜单个蛋白沿膜法线方向运动的最高精度。应用这一方法,可解决以往蛋白质与膜相互作用研究中的问题,包括膜蛋白的跨膜动力学、膜蛋白拓扑结构的动态转变及细胞信号感知与响应等。

  细胞膜结构极其复杂。细胞膜上生物大分子的动力学,有些是由其自身的特征和功能决定,有些是由与其相互作用的其他蛋白质决定。三项技术联用,可以解决这个二选一的难题。例如,如果是前者,那么在活细胞膜上表现出来的动力学,亦可以在“干净”的模型系统中观察到。如果是后者,则只能在真实膜系统中观察到。研究人员可以通过在模型系统中融合潜在相互作用对象的方式,找出决定该蛋白动力学性质的其他生物大分子。以上系列测量方法的优势是无须改变生命科学实验室普遍采用的商业荧光显微镜的结构和运行模式,便于推广。对膜上的生物大分子进行荧光标记后,针对不同的研究对象,可采取不同的观察策略。既可以用全内反射荧光显微镜又可以用共聚焦荧光寿命显微镜对目标进行有效观察:基于全内反射荧光显微镜可以观察贴壁细胞;基于共聚焦荧光寿命显微镜可以观察不能贴壁的悬浮细胞。

  相关研究成果以Subnanometer-precision measurements of transmembrane motions of biomolecules in plasma membranes using quenchers in extracellular environment为题,发表在Nano Letters上。侯文清、马东飞和贺小龙为论文的共同第一作者,陆颖、李明为论文的共同通讯作者。研究工作得到科学技术部重点研发计划、国家自然科学基金委员会、中科院前沿科学重点研究计划和中科院青年创新促进会等的支持。

图1.QueenFRET原理示意图。荧光供体对细胞外填充荧光受体的能量转移

图2.基于全内反射显微镜的细胞膜内外磷脂分子分析

图3.基于共聚焦荧光寿命显微镜的细胞膜内外磷脂分子分析

相关文章

水氧化产氧的多中心多步骤动力学微观机制被揭示

近日,中国科学院大连化学物理研究所李灿院士、研究员王秀丽团队在光催化动力学机理研究方面取得新进展。团队利用自主研发的反应时间尺度瞬态吸收光谱方法,揭示了典型催化剂四氧化三钴(Co3O4)上催化水氧化产......

科学家发现协助线粒体外膜蛋白嵌入的关键蛋白

线粒体外膜蛋白不仅可以调控线粒体与其他细胞器的分子信号传递,还能够促发受损线粒体通过自噬方式降解从而维持细胞线粒体稳态。线粒体外膜蛋白是如何嵌入线粒体膜的机制仍有待揭示。美国麻省理工学院和加州理工学院......

新型扩张显微技术让隐藏分子“现形”

在活细胞内,蛋白质和其他分子通常紧密地堆积在一起。这些密集的簇很难成像,因为无法将荧光标记嵌在分子之间而使它们可见。据29日发表在《自然·生物医学工程》杂志上的论文,美国麻省理工学院研究人员开发出一种......

活细胞转录组测序:像看电影一样了解细胞的“前世今生”

在我们呱呱坠地之前,受精卵是如何发育成复杂个体的?为何正常的细胞会慢慢变成癌细胞?细胞是生命的基本单位,了解它的过去、现在和未来不仅有助于我们了解正常发育的过程,也对理解疾病的产生和发展至关重要。然而......

中国科大在集成光量子器件中单光子阻塞取得新进展

中国科学技术大学郭光灿院士团队的邹长铃教授研究组,提出了在单个光学模式中,利用极弱的光学非线性实现光子阻塞的新原理和新方案,并分析了其在集成光学芯片上实现的实验可行性。相关成果日前发表于《物理评论快报......

拓扑材料高压超快动力学研究取得进展

近日,中国科学院合肥物质科学研究院固体物理研究所计算物理与量子材料研究部与广东大湾区空天信息研究院、中科院合肥研究院强磁场科学中心等合作,探究了高压下拓扑绝缘体Sb2Te3的电子和声子动力学,探索了压......

NatureMethods:新型光片超分辨显微成像实现精细观测

华中科技大学课题组3月12日在NatureMethods在线发表研究论文,提出了一种基于深度学习的超分辨荧光显微镜,实现对活细胞的精细动态和相互作用进行快速、三维、长时程地观测。细胞的稳态离不开内部多......

解析大麦叶绿体PSINDH膜蛋白超大分子复合物空间结构

光合作用光反应过程是在一系列镶嵌在光合膜上的蛋白质超分子机器中进行的,通过光驱动光系统II(PSII)和光系统I(PSI)反应中心电荷分离及光合电子传递,将光能转化为化学能(ATP和NADPH),用于......

我国学者发现多体量子相变的新动力学行为

图1光晶格超流至Mott态Kibble-Zurek动态相变,左图为改进后的光晶格准动量测量,右图为绝热和非绝热速率条件下超流相至Mott绝缘体的非相干比例在国家自然科学基金项目(批准号:9173620......

科学家解析膜蛋白DGGGPase结构与功能

膜脂是细胞膜的重要组成部分,主要由脂类分子以双分子层的形式构成的膜骨架。微生物在生长过程中,生物膜脂的合成与代谢调控具有重要作用。虽然微生物细胞膜脂质合成的主要机制已被阐明,但古细菌细胞膜的甘油磷脂生......