来自西班牙巴塞罗那市生物医药研究所肿瘤学项目的科学家们发现了一个使得结肠癌转移的关键过程。这一研究被选为封面故事,发表在著名期刊《癌细胞》(Cancer Cell)杂志上,揭示了在转移过程中结肠肿瘤细胞必须与健康细胞结成联盟以便移植到其他器官。
生物医药研究所结肠癌实验室的科学家Eduard Batlle和Elena Sancho领导了这一由17名研究人员组成的小组,他们证实结肠癌的转移能力在于肿瘤周围的称作间质(stroma)的健康细胞。尽管长期以来人们推测间质与这一过程难脱干系,本研究是第一次标志着观察到微环境中的健康细胞发挥重要作用使得一种特殊的肿瘤类型发生了转移。
这一研究发现可以转化让患者直接受益,在5年多的时间内可提供测试预测癌症复发,使得医生能够根据预后靶向治疗。
在肿瘤微环境中肿瘤干细胞改变健康细胞
通过研究345个结肠癌病例,利用公共数据库中的信息以及巴塞罗那三家医院提供的患者样本,研究小组鉴别了对结肠癌转移至关重要的因子。他们发现当肿瘤干细胞达到肝脏,这一结肠癌转移的通常靶点时,它们向微环境中释放一种称作TGF-beta的分子。周围的细胞,包括巨噬细胞、白细胞、成纤维细胞和内皮细胞通过释放一组不同的分子作为应答。研究人员发现肿瘤微环境中的细胞生成interleukin-11 (IL11),引起了肿瘤干细胞一系列的遗传改变使得它能够在异质器官中存活。
Batlle 解释说:“本研究提出了一种范式改变。直到现在,如果我们想知道某位结肠癌患者是否有可能形成转移,我们会关注他们的肿瘤细胞。这一研究表明我们需要看的应该是土地,而不是种子。我们可以预测如果种子种植的土地是肥沃的,作物将会生长。TGF-beta就是改变肿瘤种子生长土地的肥料。”
科学家们还观察到原发器官中的肿瘤细胞已经具备了改变它们微环境的能力。“通过间接的方式我们可以断定是否将会有转移。如果我们看到在结肠的原发肿瘤位点间质已经发生改变,这意味着当肿瘤细胞散播到肝脏时也能够改变微环境,”研究的第一作者、Batlle实验室一名法国博士后研究人员 Alexandre Calon说。
预备在5年内一项测序用于预测复发
结肠癌是全球第二位的癌症死亡原因。当前的治疗通常采用手术结合化疗。治疗干预后,患者通常获得缓解,可持续数月或几年。30-40%的会复发,大部分主要转移到肝脏或是肺脏。Elena Sancho解释说:“大概在5年内,我们将有可能在市场上获得一种测试,鉴别这些具有转移风险的患者,使得医生可以细微调整他们的治疗方案。”
科学家们观察到大约15%的患者不会形成转移,其与间质是否被TGF-beta改变有关。这意味着获得一种诊断测试来分析间质的遗传标记物(是否有 TGF-beta和interleukin-11等分子存在),医生有可能能够确定具有转移风险的患者。如果这项研究的数据得到证实,10-15%的患者可能不再需要接受化疗,导致他们的健康直接受益,并更好地利用资源。另一方面,如果测试预测出转移高风险,患者将能够得到更积极的治疗,接受更全面的监控。
科学结果的验证以及未来的转移治疗
在新论文中,研究小组还证实通过消除间质中的TGF-beta信号可以阻止转移发生。他们采用一种已在临床试验中用于治疗其他疾病的TGF- beta抑制剂来治疗具有侵袭性结肠癌的小鼠。它们的肿瘤没有发生转移。“这一试验表明TGF-beta和肿瘤间质必须‘相互对话’确保发生转移。小鼠中的研究结果表明TGF-beta激活的患者和处于疾病初期阶段的患者有可能受益于TGF-beta抑制剂,” Batlle解释说。
据研究人员所说,对于TGF-beta的依赖仅限于转移初期阶段。一旦转移在异质器官中占据主导,给予抑制剂将不再有效。Batlle说:“尽管如此,我们必须指出开发一种治疗结肠癌转移的药物是一个复杂的过程。如今,绝大多数的抑制剂都必须首先对无法治愈的患者进行测试。临床试验的目的是减缓肿瘤生长,而我们给予小鼠的分子却只在非常早的阶段起作用。我们已在这篇文章中呈送了我们的证据,并且为进一步开发基于TGF-beta的抑制剂打开了大门。”
清华大学副教授邵玥团队与合作者利用人多能干细胞,首次在体外培养出一种包含胃底和胃窦双极分布的胃器官发育模型,破解了WNT信号梯度悖论,建立了微尺度组织定向组装技术,可对类胃囊中不同谱系的组织模块独立开......
“这里将百年历史积淀与现代医学教育完美融合,这种传承与创新的平衡令人印象深刻。”9月3日下午,安徽医科大学新医科中心(新校区)迎来一位国际“大咖”:诺贝尔生理学或医学奖得主、英国卡迪夫大学教授马丁·埃......
十年积淀,IGC2025-广州站第十届细胞及衍生物研发与产业化大会将在10月23-24日于广州再度创新启航!IGC广州站以“政策催化与技术创新,挖掘细胞产业应用多样性”为主题,从主会场与四大专场论坛出......
美国科学家首次利用干细胞培育出具有完整血管网络的肺类器官。这些“迷你”肺与人类肺部的发育过程高度相似。这项发表于《细胞》杂志的最新成果,不仅揭开了人类早期发育的奥秘,也为构建肠道和结肠等其他血管化器官......
在受伤后,一些涡虫几乎可以再生体内的所有细胞,墨西哥钝口螈可以重建整个四肢和部分大脑,斑马鱼可以修复断裂的脊髓,绿安乐蜥则能重新长出尾巴。鱼类、两栖动物、爬行动物和蠕虫展现的再生能力令研究人员着迷已久......
当实验小鼠的血管受损后,科学家将仅用5天时间在实验室中培育出的微型球状人工血管植入其体内,成功恢复了受损组织的血液供应,大幅减少了组织坏死的发生。这一突破为未来治疗因事故或血栓导致的组织损伤带来了新的......
2025年6月4日,北京——安捷伦科技公司宣布荣获两项科学家选择奖:公司凭借所举办的《为未来而生的HPLC:隆重推出全新AgilentInfinityIII液相色谱系列》荣获“2024年度在线研讨会”......
......
中国科学院广州生物医药与健康研究院刘兴国团队与广州医科大学应仲富团队等发现,线粒体未折叠蛋白反应(UPRmt)在多能干细胞命运中通过c-Jun调控组蛋白乙酰化,进而影响间充质-上皮转化(MET)的新模......
IGC 2025(第九届免疫基因及细胞治疗大会)将于4月17-18日在北京再度启航!大会为期两天,分类出五大细分论坛,深度解析免疫细胞治疗、干细胞与外泌体治疗、基因编辑及基因治疗、mRNA疫......