发布时间:2014-02-19 09:26 原文链接: 上海生科院发现打破细胞重编程屏障的关键因素

  2月13日,国际期刊Cell Stem Cell 杂志在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所徐国良课题组的研究论文。该研究发现DNA加氧酶TET和糖苷酶TDG共同介导DNA氧化去甲基化,在细胞命运转变中起必不可少的作用。

  生物体的各种细胞具有精细的分工,每一类细胞都执行特定的功能。细胞命运一旦决定,就具有相对稳定性。维持细胞命运稳定或限制细胞命运改变的屏障对防止细胞癌化非常重要。这些屏障在正常发育过程中如何得到建立,并在一些特殊生理或病理条件下如何被消除,是当前科学研究的一大难题。体外细胞重编程是研究细胞命运转变的最佳范例。每种类型的细胞都有它自身的表观遗传修饰,决定基因表达谱式,并在细胞重编程时发生改变。哺乳动物基因组DNA中的5-甲基胞嘧啶(5mC)是一种稳定存在的表观遗传修饰,启动子区域的高甲基化修饰一般意味着基因表达的沉默。但近年研究发现,5mC可以被Tet家族蛋白氧化成为 5hmC,5fC和5caC。5fC和5caC又可以被DNA糖苷酶TDG切除,进而启动碱基切除修复途径完成DNA的去甲基化。由于DNA去甲基化可以使被沉默的基因重新激活,由Tet和TDG负责的DNA氧化去甲基化是否为细胞重编程过程所必需,成了大家关注的焦点。

  徐国良课题组联合广州与北京的相关科研人员,将Tet家族的3个成员及Tdg基因进行了敲除实验,发现缺乏氧化去甲基化能力的间充质类型的成纤维细胞不能启动向上皮细胞的转化(MET),完全丧失了发生重编程的能力。进一步的研究阐明,Tet或TDG的缺失导致MET发生过程中关键的miR-200家族基因不能被激活。 Tet和TDG使miR-200家族基因去甲基化来促进它们的表达,而miR-200家族基因能够促进成纤维细胞越过MET障碍,从而顺利完成重编程。对于已经是上皮类型的神经前体细胞,或者新生鼠皮肤角质细胞,则不需要Tet和TDG就能发生重编程,显示出了这种调控的特异性。即成纤维细胞越过MET障碍之后,即使没有Tet和TDG也能顺利完成重编程。以上表明它们介导的去甲基化,对于多能性基因Oct4基因激活等后续事件,并不是必需的。作者认为这一研究还更正了以前关于多能性基因激活机理的错误认识。

  该工作得到了国家科技部、国家基金委和中国科学院的资助。

TET和TDG介导的DNA氧化去甲基化是打破细胞重编程屏障的关键

相关文章

我国科研人员找到导致反复“试管”失败的“基因钥匙”

10月16日,记者从中信湘雅生殖与遗传专科医院获悉,该院研究员林戈、副研究员郑伟团队,联合山东大学、上海交通大学医学院等单位的科研团队开展合作攻关,系统揭示了卵子与早期胚胎质量问题导致女性反复“试管”......

衰老如何改变我们的基因

衰老对身体产生的可见影响有时与基因活动的无形变化有关。DNA甲基化的表观遗传过程会随着年龄增长而变得不再精确,造成基因表达的变化。而这种变化与随着年龄增长而出现的器官功能衰退和疾病易感性增加有关。如今......

肠道微生物通过甲基化调控肌肉纤维类型转化

近日,中国农业科学院深圳农业基因组研究所(岭南现代农业科学与技术广东省实验室深圳分中心)和佛山鲲鹏现代农业研究院研究员唐中林团队在国际期刊《肠道微生物》(GutMicrobes)上发表论文。该研究揭示......

为何有人衰老更快?揭秘背后的400个基因

有些人比同龄人更显年轻,而有些人看着更显老;有些人年逾九旬仍身心康健,而另一些人早在数十年前就饱受糖尿病、阿尔茨海默病或行动障碍的困扰;有些人能轻松应对严重摔伤或流感侵袭,而有些人一旦住院就再难康复。......

科学家发现玉米耐热关键基因

近日,西北农林科技大学玉米生物学与遗传育种团队联合华中农业大学玉米团队在《植物生理学研究》发表论文。研究初步揭示了ZmGBF1-ZmATG8c模块通过自噬途径调控玉米耐热性的分子机制。随着全球气温持续......

降本提效!我团队研制出系列牛用基因芯片

记者21日从国家乳业技术创新中心获悉,该中心技术研发团队成功研制出奶牛种用胚胎基因组遗传评估芯片和“高产、抗病、长生产期”功能强化基因组预测芯片。该系列基因芯片具有完全自主知识产权,填补了我国基因芯片......

新研究:阻断或抑制一种特殊基因可选择性杀伤癌细胞

国际期刊《内分泌学前沿》日前刊登的一项新研究揭示,一种特殊基因对肠道吸收维生素D及其后续代谢过程至关重要,阻断或抑制该基因能够选择性抑制癌细胞生长。这一发现在癌症治疗等精准医学领域具有广阔应用前景。维......

我国科学家发现大豆种子油蛋比调控关键基因

记者从安徽农业大学获悉,该校王晓波教授团队联合中国农业科学院作物科学研究所邱丽娟、李英慧研究员团队,解析了关键基因对大豆种子油脂和蛋白比例(油蛋比)的调控机制,为高油或高蛋白大豆品种选育提供了新方向。......

茶叶大小谁定?这个基因很关键

茶树是以收获新梢为主的叶用经济作物,茶芽大小不仅直接影响鲜叶的产量和品质,还与茶类适制性密切相关。解析茶树芽大小的遗传调控机制,有助于改良茶树品种、提高茶叶产量。近日,中国农业科学院茶叶研究所种质资源......

这项研究找到了玉米穗叶结构候选基因

玉米作为全球重要的粮食、饲料和工业原料作物,其高产对保障粮食安全至关重要。近日,东北农业大玉米遗传育种团队完成的研究在《农业科学学报(英文)》(JournalofIntegrativeAgricult......