在哺乳动物细胞中,DNA甲基化精密地调节基因的表达,从而在许多生理和病理过程中起着举 足轻重的作用。近期,来自中科院上海生命科学研究院“百人计划“胡荣贵研究员带领的研究小组,在《Cell Discovery》发表题为“A CRISPR-based approach for targeted DNA demethylation”的研究成果,报道了一种新的方法,采用目前广泛使用的CRISPR-Cas系统来靶定DNA去甲基化。
DNA甲基化是向DNA添加甲基的一个后生过程,主要发生在CpG二核苷酸中胞嘧啶碱基的第五个碳上。在哺乳动物细胞中,DNA甲基化调控着基因的 表达,从而在无数的生理和病理过程中发挥关键的作用,其中包括,但不限于,细胞发育和分化、基因组印迹和肿瘤发生。通常,肿瘤抑制基因中的DNA甲基化, 会沉默它们的表达,并将有助于多种类型的人类癌症。另一方面,DNA甲基化也是许多毁灭性的人类神经肌肉疾病的病因,包括脆性X染色体综合征,其中 FMRP的启动子区中三核苷酸重复(CGG)的扩增,可导致基因的超甲基化,并大幅抑制该基因的表达。因此,操纵靶基因DNA甲基化状态的技术进步,不仅 有助于我们理解DNA甲基化如何在特定背景下调节基因的表达,而且能控制基因表达,并可能带来有益的临床预后。
最近,有研究发现许多酶能够以不同的机制催化活性的DNA去甲基化。据报道,Tet加双氧酶催化的5-甲基胞嘧啶氧化,可促使具有Tet催化结构域(Tet-CD)的DNA去甲基化,作为最小的功能模块。研究人员曾尝试利用转录激活因子样效应物-融合的TET1-CD靶定DNA去甲基化,来激活靶基因。然而,它更广泛的作用被限制为基于转录激活因子样效应物的策略,需要繁琐的设计和组装,从而不适合于高通量应用。
近年来,CRISPR系统已被广泛应用于基因组工程与编辑。利用失活的核酸内切酶 Cas9(dCas9),开发的合成生物学平台已经实现了基因调控、基因组编辑或荧光标记。此外,在sgRNA中意外发现的可塑性,可使额外的RNA元件 插入形成sgRNA2.0系统。一般而言,这种RNA元件可被许多RNA特异结合蛋白效应物识别,这将可能导致靶向dCas9介导的功能基团的效力放大。
在这项研究中,研究人员报道了一种新的方法,利用CRISPR-Cas9系统,靶定DNA去甲基化。最初,研究人员通过向传统sgRNAs中插入两个拷贝的噬菌体MS2 RNA元件,构建了修改的单导向RNAs(sgRNAs)(sgRNA2.0),这将有利于Tet1催化结构域(TET CD),与dCas9或MS2外壳蛋白融合,结合到基因位点。
随后,研究人员证明,该系统可显著上调靶基因的转录,包括RANKL、MAGEB2或MMP2,这与它们邻近的启动子中的CpG的DNA去甲基,是 密切相关的。此外,dCas9/sgRNA2.0指导的去甲基化系统,似乎能提供有效的靶基因去甲基化,但是具有脆弱的脱靶效应。该系统的应用,不仅可以 帮助我们理解“在具体背景中DNA甲基化如何可以调节基因表达”的机制,而且也使我们能够控制基因表达,并带来潜在的临床益处。
近年来,环状单链DNA(CssDNA)因其稳定性高、免疫原性弱、可编程性强,成为基因调控、细胞治疗等医学合成生物学领域很有潜力的分子工具之一。近期,中国科学院杭州医学研究所研究员宋杰团队针对此前开发的......
随着信息技术的飞速发展,传统存储方式已经逐渐无法满足大数据时代的需求。在此背景下,DNA信息存储技术应运而生,通过利用DNA分子存储数据,已经被视为未来大规模数据存储的潜力介质。每克DNA能够存储数百......
近日,我国科研人员在DNA存储领域取得新突破,研发了一种全新的DNA存储系统——HELIX,该系统专门用于存储生物医学数据,并成功实现了60MB的时空组学图像的存储与恢复。这一科研成果由天津大学应用数......
4月16日,深圳大学医学部基础医学院、卡尔森国际肿瘤中心教授朱卫国团队在《自然》杂志在线发表最新研究。他们揭示了连接组蛋白H1脱酰胺化修饰促进染色质开放和DNA损伤修复的机制,为肿瘤放化疗的精准靶标设......
中国环境监测总站开展水生生物DNA条形码及环境DNA分析测试公开征集工作,现向社会诚邀业界口碑良好并具有相关资质的单位参与征集。本项目资金来源:财政资金。一、项目概况:二、响应人资格要求:1.响应人须......
经过20多年的努力,科研人员成功地对6种现存猿类的基因组进行了完整测序,为研究人类进化提供了近距离视角,这被英国《自然》杂志称为“遗传学的一个里程碑”。123名来自多个国家和地区的科研人员组成的团队9......
以色列耶路撒冷希伯来大学近日发布公报说,该校研究人员绘制出一份较为全面的人类基因“隐秘开关”图谱,有助于推动遗传疾病等方面研究。人类遗传物质脱氧核糖核酸(DNA)上的基因可以被甲基化,这可以使相关基因......
美国芝加哥大学的科学家开发出一种名为体积DNA显微镜的革命性成像技术。该技术可“从内到外”绘制生命3D图,科学家通过标记和追踪分子间的相互作用,构建出复杂的遗传物质3D图,进而提供前所未有的生物体内视......
近日,中国科学院微生物研究所刘晓团队在NucleicAcidsResearch上发表了题为“CheckpointkinasesregulatethecircadianclockafterDNAdama......
阿卜杜拉国王科技大学的一项开创性研究首次直接观察到了DNA开始解旋的瞬间,揭示了使细胞能够准确复制其遗传物质的基本机制。这项研究使用冷冻电子显微镜和深度学习技术,捕捉到解旋酶与DNA相互作用的精微细节......