
ABA-PP2C信号通路
脱落酸(abscisic acid,ABA) 是植物最重要的一种激素,它调控植物种子发芽、根系发育、叶子枯萎等生理活动。同时,ABA在植物的抗旱、抗盐过程中起着极为重要的作用。近期,中科院上海药物研究所“千人计划”徐华强课题组与美国文安徳研究所Karsten Melcher、上海植生所与普渡大学的朱健康教授合作,分别在Science和PNAS上发表了ABA信号通路调控机制的最新发现。
脱落酸信号通路是通过受体调节的激酶和磷酸化酶,从而控制下游的作用蛋白。但长期以来ABA的受体是什么,一直是一个存有颇多争议有待解决的关键科学问题。在2009年,ABA受体的发现及其结构的鉴定被Science杂志评为了当年度十大科学发现之一。其中部分结构生物学工作来自于徐华强与朱健康课题组的合作研究。
ABA的信号通路是通过受体激活下游激酶的,在没有ABA的情况下,激酶是被磷酸化酶抑制的。此次发表的两篇文章分别解决了激酶如何被抑制以及如何被激活的两个关键科学问题。
在Science文章中,研究人员报道了激酶和磷酸酶的复合体结构,从中发现激酶与ABA受体对磷酸化酶的识别有惊人的相似性。ABA受体的作用位点是在PP2C的活性中心。激酶和磷酸酶的复合体结构揭示了激酶的活性中心与PP2C的活性中心相互对接,从而模拟了受体-PP2C的相互作用。这些结构生物学的研究结论提出了一个简单的新机制,即耦合的ABA受体能直接抑制磷酸化酶并激活激酶。同时,这也揭示了激酶-磷酸化酶通过催化位点的相互作用而进行彼此调控的新法则。
在PNAS文章中,研究人员报道了调控ABA信号通路激酶的自身激活机制。通常激酶要通过上游激活因子被激活,而调控ABA的激酶则不同,它具有高水平的自我激活能力。研究人员的结构发现,调节ABA的激酶具有一个特有的螺旋结构来固定激酶的三维结构,从而维持激酶的自我磷酸化活性。结合ABA受体—PP2C复合体结构,该研究详实地解析了ABA激素如何抑制PP2C从而激活调节aba信号通路的激酶,从而为ABA信号通路的核心结构提供一个完整的解析。
目前,世界范围内淡水资源的缺乏已成为一个不容忽视的问题,而农业用水量高达淡水资源的70%,淡水资源的匮乏业已成为遏制农业产量的最主要因素。因此,ABA信号通路的研究一直是植物科学领域的一大热点。ABA信号通路的研究以及ABA类似物的发现将有助于推进农作物的基因工程及抗旱、抗盐的药物发现,对于缓解我国农业用水的困境有着极为重要的意义。
2月20日,中国科学院青藏高原研究所赵玉彤博士等在《自然》“MattersArising”栏目发表学术评论,对该期刊2023年发表的一项关于大西洋气象干旱威胁青藏高原水资源安全的研究提出了质疑,认为大......
多发性骨髓瘤(MM,multiplemyeloma)是一种复杂的血液系统疾病,目前临床上存在很明显未满足的治疗需求;尽管传统疗法能明显改善患者的生存率,但这种疾病目前仍然无法治愈,近日,一篇发表在国际......
各省、自治区、直辖市水利(水务)厅(局)、社会信用体系建设牵头部门,新疆生产建设兵团水利局、社会信用体系建设牵头部门,水利部各流域管理机构及相关直属单位:取用水领域信用评价是加强取用水监管、规范取用水......
2024年5月11日,由康绍忠院士主持的“我国高水效农业发展战略研究”咨询项目验收会在新疆阿拉尔市召开。验收组由陈学庚、尹飞虎、邓铭江院士及相关业务和财务专家共10人组成。相关部门领导专家共计30余人......
近日,水资源工程与调度全国重点实验室建设发展20年暨第五届学术委员会第一次会议在武汉举行。本次会议旨在回顾实验室二十年来的发展历程,总结成果,展望未来,推动实验室在新时代背景下更好地服务国家战略,为水......
世界气象组织日前发表《2022年全球水资源状况报告》。这份对全球水资源进行广泛评估的报告指出,由于气候变化和人类活动,全球水文循环正在发生重大变化,水文循环正在失去平衡。报告指出,2022年期间,全球......
复旦大学类脑智能科学与技术研究院特聘教授冯建峰等人领导的一项研究发现,生活方式健康的人患抑郁症的几率是生活方式不健康的人的一半。这表明改变生活方式,如定期锻炼和社交,可以降低患抑郁症的风险。相关研究结......
疼痛是一种复杂的生物-心理-社会现象,国际疼痛研究协会(IASP)于2020年将其重新定义为“与实际或潜在的组织损伤相关或类似的不愉快的感觉和情绪体验”。根据时间定义,疼痛主要分为急性疼痛和慢性疼痛。......
植物依赖细胞内免疫受体NLR识别病原菌分泌进入胞内的效应因子(effector),并触发ETI(Effector-TriggeredImmunity)免疫。NLR蛋白根据其N末端结构域可分为三类:TI......
干旱及盐碱等引起的渗透胁迫是限制农作物生长速度与产量的关键因素之一。目前,植物细胞如何感知外界环境的渗透变化并做出适应性响应的早期机制尚不清楚。谷子(Setariaitalica)起源于我国黄河流域,......