近期,中国科学院分子植物科学卓越创新中心王二涛研究组揭示植物磷信号网络控制菌根共生的分子机制,相关成果以A Phosphate Starvation Response (PHR)-centered network regulates mycorrhizal symbiosis为题,作为封面论文于10月12日发表在《细胞》上。
磷元素是植物体的重要组成成分,参与植物体内众多酶促反应及信号转导过程。磷酸盐是植物从土壤中获取磷元素的主要形式,但磷元素主要以有机磷或难溶性盐的形式存在于土壤中,不利于植物吸收。除了通过根系直接从土壤中吸收磷元素(根途径)之外,多数植物还演化出与丛枝菌根真菌建立共生关系间接从环境中获取磷元素(共生途径)。
菌根共生是自然界中普遍存在的一种共生关系:宿主植物以脂肪酸的形式为菌根真菌提供碳源,用于其生长和繁殖;菌根真菌则增加宿主植物对矿质营养元素,尤其是磷元素的获取。以往研究发现,植物根据磷营养状态调控其与丛枝菌根真菌之间的共生,被称为菌根共生的“自我调节”(“self-regulation” nature of mycorrhizal symbiosis),但其机制未知。
分子植物卓越中心以水稻中菌根共生相关基因的启动子为诱饵,进行水稻转录因子文库筛选,首次绘制出水稻-丛枝菌根共生的转录调控网络,并验证多个调控丛枝菌根共生的转录因子。其中发现,磷响应转录因子OsPHR1/2/3处于菌根共生转录调控网络的核心位置。进一步研究发现,PHRs通过结合P1BS顺式作用元件激活菌根共生相关基因的表达,正向调控丛枝菌根共生。Osphr1/2/3三突变体中,菌根真菌不能有效定殖水稻根部皮层细胞,表明PHRs是菌根共生关键调控因子。
SPX是磷的感受器,通过蛋白互作抑制PHRs结合到目的基因的启动子上,抑制低磷响应基因的表达。研究发现,水稻中的SPX1能够抑制OsPHR2激活菌根共生相关基因的表达。PHR过量表达植株和SPX缺失突变体的菌根共生对高磷处理不敏感,表明高磷通过PHR-SPX模块抑制菌根共生。因此,该研究阐明了菌根共生领域植物“自我调节”这一科学问题。
为获取粮食丰收,农业生产中往往施加大量的含磷化肥。通过提高PHR基因的表达,有望达到增加水稻直接吸收磷营养和间接通过丛枝菌根共生磷营养吸收的目的,降低磷肥施用,为农业生产的可持续发展提供新方案。
研究得到国家自然科学基金、中科院基础研究青年科学家项目、中科院战略性先导科技专项和国家重点研发项目的资助。
水稻-丛枝菌根共生的转录调控网络
记者杨舒从中国农业科学院生物技术研究所获悉,该所作物耐逆性调控与改良创新团队日前联合国内外研究机构,构建了首个水稻的多器官单细胞多组学图谱,系统解析了水稻不同细胞类型的功能及其对复杂性状的调控作用,有......
广东省农业科学院水稻研究所副研究员谭健韬/研究员刘琦团队与华南农业大学教授祝钦泷团队合作,研究开发出植物精准碱基编辑器实现水稻重要农艺性状蛋白功能活性的梯度调节。近日,相关成果发表于《先进科学》(Ad......
水稻作为起源于热带或亚热带的粮食作物,其生长发育对低温胁迫敏感。伴随全球气候变化加剧,极端低温事件发生频率显著上升,发掘耐冷基因并解析分子机制,有利于水稻高产稳产遗传改良。目前,利用自然群体挖掘的水稻......
强烈的厄尔尼诺事件能够诱发全球多个粮食产区的同步减产,因此被认为是威胁全球粮食生产稳定性的重要因素。以往研究普遍认为,厄尔尼诺是通过与粮食产区气候要素(温度、降水等)的遥相关导致该产区的作物减产。近日......
华中农业大学作物遗传改良全国重点实验室、生命科学技术学院教授李一博带领的团队,从自然环境中筛选出水稻耐高温基因QT12,为水稻在高温环境下实现稳产提质及育种提供新策略。相关成果于北京时间4月30日晚发......
在广袤的农田里,水稻是人类重要的主食作物之一。然而,土壤盐渍化这一全球性难题,正严重威胁着水稻的生长与产量。据联合国粮食及农业组织相关数据显示,全球至少10%的土地受到盐渍化影响,这使得水稻在生长过程......
近日,中国农业科学院作物科学研究所作物精准育种技术创新团队成功开发基于我国自主知识产权基因编辑新工具Cas12i3-5M的高效水稻多基因编辑系统,为通过多基因编辑快速聚合水稻多个优异农艺性状提供了重要......
辅酶Q10要不要补?什么情况下补?怎么选?……在社交平台上,经常能看到此类咨询帖。辅酶Q10与人体健康,尤其是心脏健康息息相关,是近年来最受欢迎的膳食补充剂之一。然而,辅酶Q10不容易被人体吸收,且有......
1月30日,中国科学院院士、分子植物科学卓越创新中心研究员林鸿宣团队联合上海交通大学林尤舜团队,在《自然》(Nature)上发表了题为Fine-tuninggibberellinimprovesric......
中国科学院院士、中国科学院分子植物科学卓越创新中心研究员林鸿宣团队与上海交通大学副教授林尤舜团队合作,首次提出精准调控植物激素赤霉素(GA)到合适的中等水平是同时提高水稻碱-热抗性和产量的关键,并发现......