近日,Nature发表了中国科学技术大学潘建伟团队的最新重磅成果:两个量子存储器通过光纤跨越数十公里实现远程纠缠。
在这项最新研究中,潘建伟、包小辉及其同事利用一种名为腔增强的量子效应,来制备纠缠原子和光子,再将这些纠缠原子和光子转换为适合于电信传输的频率,最后在两个由 50 公里长光纤连接的节点之间实现了纠缠。
研究结果表明,与纠缠光子相比,多节点之间的原子–光子纠缠可能更适合量子纠缠的远距离传输。
本项研究演示了两个相距 50 公里的量子存储器的纠缠,这一距离足以连接两座城市,并比之前报道的距离要远得多,或为实现多节点、远距离纠缠铺平了道路,有助于量子互联网的开发。
就像计算机中的硬盘驱动器一样,量子储存器存储量子信息。它们是构建量子互联网的必要部分,并将促进实现超安全的量子通信,允许远程量子计算机一起工作。
以前,科学家已经实现了相距 1200 公里的单个光粒子纠缠,但是这种纠缠无法存储,而量子储存器纠缠之前最大物理距离只有一公里之遥。
远程纠缠的突破
实现连接远程量子处理器的量子互联网,将能够支持许多革命性的应用,比如分布式量子计算。而想要实现量子通信,建立远程量子存储器之间的纠缠是关键挑战。
尽管相关研究已经取得了巨大进展,但由于严重的传输损失,此前两个节点之间可实现的最大物理距离是 1.3 公里,想要实现远程纠缠依然存在巨大挑战。
为了将距离扩展到城市规模,在这项最新论文中,研究人员将基于原子团的量子储存器与有效的量子频率转换(QFC)相结合,并通过数十公里的城市级光纤传输,实现了两个量子储存器的纠缠。
原子集合之间的远程纠缠产生示意图,两个量子存储节点(节点 A 和 B)通过光纤连接到一个用于光子测量的中间站。
具体而言,研究人员利用腔增强来创建原子-光量子纠缠的明亮来源,并采用差分频率生成(DFG)工艺实现光纤低损耗传输,然后通过双光子干涉实现了超过 22 公里的原子团纠缠,并通过单光子干涉实现了超过 50 公里的原子团纠缠。
远程纠缠实验鸟瞰图,两个量子节点位于中国科技大学,来自两个节点的电信光子通过两个平行的部署光纤,传输到位于合肥软件园的中间站。
该实验证明了两种通过光纤中的长距离光子传输实现双量子存储器纠缠的可行方法。研究人员表示,通过加入更多的量子存储器,实验结果可以扩展到通过多光子干涉在远距离纠缠多个量子存储器,还可以在两个子链路上产生两对远程原子纠缠,并按照量子中继方案通过纠缠交换来延长原子纠缠的距离,串联此过程可以足够地延长距离以超过直接传输的极限。
研究人员认为,将这些实验扩展到相隔很远的节点,将能够执行高级的量子信息任务,并为构建远距离大规模量子网络铺平了道路。
量子通信——无影无踪的传送过程
处于量子纠缠的两个粒子,无论分离多远,它们之间都存在一种神秘的关联,这种神秘的关联无论如何都无法用经典观念去理解,被爱因斯坦称为“遥远地点间诡异的互动”。
量子信息科学家发现,量子纠缠除了神秘之外,还是一种可以利用的超经典力量,它可以成为具有超级计算能力的量子计算机和“万无一失”的量子保密系统的基础。
按照常理,信息的传播需要载体,而量子通信是不需要载体的信息传递。
量子隐形传态即用量子态作为信息载体,通过量子态传送完成大容量信息的传输,是一种脱离实物的“完全”的信息传送,能够实现原则上的完全保密。
量子通信即是利用量子纠缠效应进行信息传递的一种新型的通讯方式,是一种无影无踪的全新通信方式。
基于量子隐形传态,人们提出了量子因特网的构想。量子因特网是用量子通道来联络许多量子处理器,它可以同时实现量子信息的传输和处理。
相比于经典因特网,量子因特网具有安全保密特性,可实现多端的分布计算,有效地降低通信复杂度等一系列优点。
作为国际上量子信息实验研究领域开拓者之一,潘建伟是该领域有重要国际影响力的科学家,近年来取得了一系列有重要意义的研究成果。
2016 年 8 月 16 日,全球首颗量子科学实验卫星“墨子”号在中国酒泉卫星发射中心发射成功。
作为“墨子”号量子科学实验卫星的首席科学家,潘建伟领衔的“墨子”号量子科学实验卫星科研团队被授予 2018 年度克利夫兰奖,这也是克利夫兰奖设立 90 余年来,中国科学家在本土完成的科研成果首次获得这一荣誉。
潘建伟院士带领团队完成量子通信卫星科研项目后,享誉国内外,被认为是当今世界量子通信领域的顶尖人物。不过,盛誉之下也引起了一些争议,不少民间学者对其成就甚至个人表达出质疑,网上也有三言两语的挖苦讽刺。
事实上,潘建伟的科研成就让绝大多数科研学者都望尘莫及,潘建伟博士期间师从量子实验研究的世界级大师蔡林格,其 27 岁时参与的研究成果入选美国《科学》杂志“年度全球十大科技进展”, 还被《自然》评为“百年物理学 21 篇经典论文”,31 岁任中国科学技术大学教授,41 岁成为中国当时最年轻的中科院院士,45 岁获国家自然科学一等奖,2017 年被评为《自然》杂志年度十大科学人物……
无论如何,有中国“量子之父”称号的潘建伟,仍在质疑中前行,并让中国在世界量子通信领域保持领先地位。
记者从中国科学技术大学获悉,该校潘建伟、张强、徐飞虎等人联合中国科学院西安光学精密机械研究所等国内外科研机构,首次提出并实验验证了主动光学强度干涉技术合成孔径技术,实现了对1.36公里外毫米级目标的高......
中国科学技术大学郭光灿院士团队的李传锋、周宗权研究组基于团队原创的无噪声光子回波方案,将可集成量子存储器的存储时间从10微秒级提升至毫秒级,同时成功突破了传统光纤延迟线的效率。3月26日,该成果发表于......
中国科学院院士、中国科学技术大学教授潘建伟,中国科学技术大学教授陆朝阳、霍永恒等在国际上首次实现效率超越可扩展线性光量子计算损失容忍阈值的高性能单光子源,综合指标达到国际最先进水平,为未来实现通用光量......
记者10日获悉,中国科学院院士、中国科学技术大学杰出讲席教授、中国科学院量子信息与量子科技创新研究院院长潘建伟教授在上海表示:“在量子计算和模拟领域,我们计划在未来5年实现几百到上千个量子比特相关操控......
2005年,潘建伟与周光召(右)在“求是杰出科学家奖”颁奖典礼上。潘建伟供图周光召先生曾任中国科学院院长、中国科学技术大学(以下简称中国科大)名誉校长,是科学界德高望重的老领导,但在我心中,光召先生更......
在浩瀚星空里,有一颗卫星独一无二,它在世界上首次实现卫星和地面之间的量子通信,初步构建了“天地一体化”量子保密通信体系。它就是由中国自主研制的量子科学实验卫星“墨子号”。从2003年萌发量子卫星通信的......
文丨《中国科学报》记者王敏在浩瀚的星空里有一颗卫星独一无二它在世界上首次实现卫星和地面之间量子通信初步构建“天地一体化”量子保密通信体系它就是由中国自主研制的量子科学实验卫星“墨子号”从2003年萌发......
中国科学技术大学潘建伟、张强、陈凯等组成的研究团队与南开大学陈景灵等合作,成功实现了关闭探测效率漏洞与局域性漏洞的哈代非定域性演示。该研究为量子力学非定域性提供了新证据,并为相关的量子信息应用奠定了基......
记者11日从中国科学技术大学获悉,该校潘建伟、张强、陈凯等组成的研究团队与南开大学陈景灵等合作,成功实现了关闭探测效率漏洞与局域性漏洞的哈代非定域性演示。该研究为量子力学非定域性提供了新证据,并为相关......
中国科学技术大学潘建伟、徐飞虎等与上海微系统所、济南量子技术研究院、哈尔滨工业大学等单位的科研人员合作,通过发展高保真度集成光子学量子态调控、高计数率超导单光子探测等关键技术,首次在国际上实现百兆比特......