[据英国工程师网站2014年7月4日报道]汲取骨骼和竹的结构灵感,美国北卡罗州立大学和中国科学院力学研究所的研究人员联合研究发现,通过逐渐改变金属的内部结构,可以针对各种应用——从防弹衣到汽车零部件,实现更强、更韧材料的定制。
在显微镜下观察金属,会看到它是由数百万密密麻麻的颗粒组成。这些颗粒的大小及排布影响金属的物理特性。金属表面的晶粒使金属硬度加强,但也使其韧性降低。研究人员发现在材料中逐渐增大晶粒尺寸,可以使金属更具延展性。这类似于一个骨竹秆横截面的结构尺寸和分布变化。总之,大小晶粒的逐渐转变使得整体材料更强、更韧,这种特征的组合是常规材料不可能实现的。
这称之为梯度结构,可以用这种技术来实现金属性能的定制。研究人员在各种金属,包括铜,铁,镍和不锈钢中测试梯度结构的概念。该技术改善了所有这些金属的性能。研究小组还在工业中用到的无间隙原子(IF)钢上测试了这种方法。
如果常规IF钢强度达到450兆帕,延展性就会非常低——断裂伸长率低于5%。低延展性意味着材料容易发生灾难性故障,如突然折成两半。高韧性材料可以拉伸,这意味着在完全失效之前给人们时间去应对这个问题。研究人员创建了一个具有梯度结构的IF钢:强度达到了500兆帕,断裂伸长率达到了20%。
梯度结构的方法,也可以使材料更耐腐蚀,磨损和疲劳。研究人员认为这是材料研究中一个令人兴奋的新领域。它有许多应用,可以很容易地、低成本地纳入到工业生产过程中。
记者从中国科学院金属研究所获悉,该所科研团队近日在固态锂电池领域取得突破,为解决固态电池界面阻抗大、离子传输效率低的关键难题提供了新路径。该研究成果已于近日发表在国际学术期刊《先进材料》上。固态锂电池......
瑞典皇家科学院8日在宣布2025年诺贝尔化学奖得主时,用一句富有诗意的话总结了获奖者的贡献:“他们为化学创造了新空间。”这一荣誉属于日本京都大学的北川进、澳大利亚墨尔本大学的理查德·罗布森和美国加利福......
一块10厘米的硅晶圆,上面有使用B-EUV光刻技术制作的大型可见图案。图片来源:美国约翰斯·霍普金斯大学一个国际联合团队在微芯片制造领域取得关键突破:他们开发出一种新型材料与工艺,可生产出更小、更快、......
通过H-α波长(656.28纳米)拍摄的太阳耀斑的最高分辨率图像,可能会重塑我们对太阳磁场结构的理解,并改进空间天气预报。天文学家利用美国国家科学基金(NSF)的丹尼尔?K?井上太阳望远镜(DKIST......
8月27日,围绕“科教融合赋能新材料创新”主题,中国科学技术大学材料科学与工程科教融合论坛暨第二届师昌绪物质科学与技术论坛,在中国科学院金属研究所举办。会议现场。主办方供图李依依、柯伟、成会明、方忠、......
记者从AEIC学术交流中心获悉,8月12日至14日,由英国伯明翰大学主办的第四届机械、航天技术与材料应用国际学术会议(MATMA2025)在英国伯明翰大学召开。来自机械工程、航空航天技术及材料科学领域......
8月7日,2025中国化工学会能源、材料与化工学术会议在中国石油兰州石化公司召开,400余名专家、学者齐聚金城兰州,聚焦国家重大战略和产业深度发展需求开展深入交流研讨,共享最新成果,加快推进甘肃省绿色......
美国麻省理工学院(MIT)团队开发出一种全自动机器人系统,可大幅加快对新型半导体材料的性能分析和测试速度。这项发表于《科学进展》杂志的技术突破,将极大提升当前对高效太阳能电池板材料的研发进程,还将为下......
红外非线性光学晶体作为激光频率转换的关键器件,在全固态激光器中具有重要的应用。当前商用的红外非线性光学晶体主要包括黄铜矿型化合物如AgGaS2, AgGaSe2和ZnGeP2 等。......
美国莱斯大学科学家领衔的团队在材料领域取得一项突破性进展。他们通过向二硫化钽(TaS2)中掺入微量铟元素,制备出具有特殊电子结构的“克莱默节点线”金属。这项发表于最新一期《自然·通讯》杂志的研究,为开......