发布时间:2019-09-12 21:02 原文链接: 人γ分泌酶识别淀粉样蛋白前体蛋白

阿尔茨海默病(AD)的标志是AD患者脑中存在淀粉样蛋白斑。淀粉样斑块的主要成分是源自淀粉样蛋白前体蛋白(APP)的β-淀粉样肽(Aβ)。I型跨膜蛋白APP首先被α-或β-分泌酶切割,分别产生83或99个残基的跨膜片段(APP-C83或APP-C99)。然后APP-C99通过其内肽酶活性被γ-分泌酶切割,产生48-残基肽Aβ48或49-残基肽Aβ49。随后通过γ-分泌酶的羧基末端肽酶活性切割Aβ49导致产生Aβ46,Aβ43和Aβ40的产生。类似地,Aβ48的切割产生Aβ45,Aβ42和Aβ38。其中,Aβ42和Aβ43特别容易聚集并形成淀粉样蛋白斑。除APP外,Notch受体也是α-和γ-分泌酶的底物。在α-分泌酶切割后,所得的跨膜Notch片段被γ-分泌酶切割以产生细胞内信号传导结构域。

人γ-分泌酶包含四个亚基:早老蛋白(PS),PEN-2,APH-1和nicastrin。作为γ-分泌酶的催化亚基,早老素是具有两个催化Asp残基的天冬氨酰蛋白酶,并且具有两种同种型PS1和PS2。在γ-分泌酶组装期间,PS1经历自身蛋白水解以产生氨基末端片段(NTF)和羧基末端片段(CTF)。PEN-2是γ-分泌酶成熟所必需的; APH-1稳定复合物和nicastrin被认为在底物结合中发挥作用。已经在PS1中鉴定了200多种AD相关突变,其中大多数导致Aβ42/Aβ40比率升高。

普遍存在的淀粉样蛋白假说假定淀粉样蛋白寡聚体直接促成AD的发展,使γ-分泌酶的抑制成为AD治疗的潜在治疗策略。不幸的是,也许是因为它们也抑制Notch切割,γ-分泌酶抑制剂会引起严重的副作用,而对AD患者没有任何明显的临床益处。在这里,施一公报告人类γ-分泌酶与跨膜APP片段的复合物的冷冻电子显微镜(cryo-EM)结构,分辨率达到2.6Å。PS1和底物之间的β-折叠对于γ-分泌酶的蛋白水解活性是必需的。该结构与γ-分泌酶 -  Notch复合物的结构比较揭示了可用于开发底物特异性抑制剂的不同特征。

与淀粉样蛋白前体蛋白结合的人γ-分泌酶的结构为γ-分泌酶连续底物切割的螺旋解旋模型提供了强有力的支持。更重要的是,该结构允许通过γ-分泌酶比较APP和Notch识别以及AD相关突变的合理化。因此,该结构用作发现γ-分泌酶的底物特异性抑制剂和理解γ-分泌酶的生物学功能以及AD的疾病机制的重要框架。