Methods

Sample growth and device fabrication

The QWP is based on the one single photon design and the core region consists of 30-period AlGaAs/GaAs (80/18 nm) quantum well structure. The central 10 nm of the GaAs well is doped with Si to 5 × 1016 cm−3. The core region is sandwiched between the top and bottom GaAs contact layers. The whole QWP structure is grown using a molecular beam epitaxy (MBE) system on a semi-insulating GaAs (100) substrate. The aluminum concentration of the AlGaAs barrier is of great importance for determining the peak response wavelength. Here the aluminum fraction is set to 1.9%. The MBE-grown wafer is processed into mesa structures with top and bottom electrodes. The detailed fabrication process of the 45° edge facet QWP can be found in ref. 41.

The QCL used in this work is based on a Al0.25Ga0.75As/GaAs material system grown by a MBE system on a semi-insulating GaAs (100) substrate. The growth starts with a 400-nm thick n-type GaAs bottom contact layer followed by the active region which consists of 76 cascade periods. Finally, a 50-nm thick GaAs top contact layer with 5 × 1018 cm−3 doping is grown on top of the active region. The MBE-grown QCL wafer is processed into single plasmon waveguide lasers using the standard semiconductor laser processing technology, for instance, the optical lithography, wet and dry etching, electron beam evaporation, lift-off, and thermal annealing.

The as-cleaved QWP and QCL chips are indium-soldered on the copper base. Wire bonds are then used for the electrical injection. Finally the packaged devices are screwed onto the cold fingers of continuous-flow liquid Helium cryostats for low temperature measurements.

Experimental characterizations

Terahertz QWP performance characterization

The photoresponse spectra of terahertz QWPs with a spectral resolution of 4 cm−1 are measured using a Fourier Transform Infrared Spectrometer (FTIR) equipped with a Globar far-infrared broadband source. The peak responsivity of the QWP is calibrated using a 1000-K blackbody source. The noise spectral density is measured using a spectrum analyser with a resolution bandwidth of 1 Hz. To accurately measure the noise, a low noise current preamplifier (Stanford Research, SR570) with a sensitivity of 200 nA/V and a bandwidth of 2 kHz is used. The readout quantity from the spectrum analyser is in the unit of V/Hz−−−√ which can be converted to A/Hz−−−√ by considering the amplifier sensitivity in A/V. Finally the NEP parameter can be derived from the peak responsivity and the noise spectral density.

Rectification measurement

The microwave rectification of the terahertz QWP is measured by employing the experimental setup shown in Fig. 2c. To read the rectified voltage using a lock-in amplifier, we amplitude modulate the RF source at a frequency of 20 kHz by a wave function generator. In order to get a strong modulation signal, we increase the peak-to-peak voltage of the wave function generator until a 95% modulation depth is obtained.

Terahertz QCL characterization

The emission spectrum of the 6-mm long terahertz QCL is measured using a FTIR. The terahertz light emitted from the QCL is coupled into the FTIR via a side input port using an off-axis parabolic mirror. The spectral resolution is set as 0.1 cm−1. To reduce the water absorption, the FTIR is under vacuum and the beam path out side the FTIR is purged with dry air.

Optical inter-mode beat note measurement

The optical inter-mode beat note of the terahertz QCL is measured using the fast terahertz QWP as shown in Fig. 1. The beat note spectra are recorded using a spectrum analyser with a bandwidth of 26 GHz. To measure the weak beat note signal, the optical alignment is critical. We do the alignment as follows: Firstly, we use a red diode laser with a piece of filter paper and a small aperture placed in sequence at the output port to imitate the QCL point source. It would be much easier to align the two parabolic mirrors using the visible analogous point source. After the optics are well aligned, we replace the diode laser with our QCL. Here we have to put the QCL facet exactly at the same position of the diode laser. Then, we run the QCL to do the fine alignment using a terahertz camera (NEC, IR/V-T0831C). Finally we replace the terahertz camera with the fast QWP to perform the optical beat note measurement.

Go to:

Acknowledgements

The authors thank Stefano Barbieri for discussions on fast terahertz detectors. This work was supported by the “Hundred-Talent” Program of Chinese Academy of Sciences, the 973 Program of China (2014CB339803), the Major National Development Project of Scientific Instrument and Equipment (Grant No. 2011YQ150021), the National Natural Science Foundation of China (61575214 and 61405233), and the Shanghai Municipal Commission of Science and Technology (14530711300, 15560722000, 15ZR1447500, 15DZ0500103 and 17YF1430000).

Go to:

Author Contributions

H.L. conceived the experiment, W.J.W. conducted the molecular beam epitaxy growth and fabricated the terahertz QCLs, Z.L.F. and H.X.W. fabricated the terahertz QWPs, Z.Y.T., Z.L.F., C.W. and H.L. performed the electrical, optical and microwave rectification characterizations for the terahertz QWP, H.L., W.J.W., and Z.P.L. conducted the optical inter-mode beat note measurements for the terahertz QCL using the fast terahertz QWP, H.L. modelled the frequency-dependent rectified voltage for terahertz QWPs, T.Z. debugged the LabView programs for the automated measurements and provided assistance during the measurements, X.G.G. designed the QWP structure, H.L. wrote the manuscript, H.L. and J.C.C. supervised the experiment, and all authors reviewed the manuscript.

Go to:

Notes

Competing Interests

The authors declare that they have no competing interests.

Go to:

Footnotes

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Go to:

Contributor Information

Hua Li, Email: nc.ca.mis.liam@il.auh.

Jun-Cheng Cao, Email: nc.ca.mis.liam@oaccj.

Go to:

References

1. Tonouchi M. Cutting-edge terahertz technology. Nat. Photonics. 2007;1(2):97. doi: 10.1038/nphoton.2007.3. [Cross Ref]

2. Köhler R, et al. Terahertz semiconductor-heterostructure laser. Nature. 2002;417:156–159. doi: 10.1038/417156a. [PubMed] [Cross Ref]

3. Williams BS. Terahertz quantum-cascade lasers. Nat. Photonics. 2007;1:517–525. doi: 10.1038/nphoton.2007.166. [Cross Ref]

4. Ito H, et al. Photonic terahertz-wave generation using antenna-integrated uni-travelling-carrier photodiode. Electron. Lett. 2003;39(25):1828. doi: 10.1049/el:20031195. [Cross Ref]

5. Momeni O, Afshari E. A Broadband mm-Wave and Terahertz Traveling-Wave Frequency Multiplier on CMOS. IEEE J. Solid-St. Circ. 2011;46(12):2966. doi: 10.1109/JSSC.2011.2162469. [Cross Ref]

6. Dooley D. Sensitivity of broadband pyroelectric terahertz detectors continues to improve. Laser Focus World. 2010;46(5):49.

7. Gousev YP, et al. Coupling of terahertz radiation to a high-T-c superconducting hot electron bolometer mixer. Appl. Phys. Lett. 1996;69(5):691. doi: 10.1063/1.117808. [Cross Ref]

8. Dalloglio G, Melchiorri B, Melchiorri F, Natale V. Comparison between Carbon, Silicon and Germanium Bolometers and Golay Cell in Far Infrared. Infrared. Phys. 1974;14(4):347. doi: 10.1016/0020-0891(74)90041-4. [Cross Ref]

9. Nguyen KL, et al. Three-dimensional imaging with a terahertz quantum cascade laser. Opt. Express. 2006;14(6):2123. doi: 10.1364/OE.14.002123. [PubMed] [Cross Ref]

10. Zhou T, et al. Terahertz Imaging With Quantum-Well Photodetectors. IEEE Photon. Technol. Lett. 2012;24:1109–1111. doi: 10.1109/LPT.2012.2196033. [Cross Ref]

11. Chen Z, et al. Wireless communication demonstration at 4.1 THz using quantum cascade laser and quantum well photodetector. Electron. Lett. 2011;47(17):1002. doi: 10.1049/el.2011.1407. [Cross Ref]

12. Yang Y, et al. Terahertz multiheterodyne spectroscopy using laser frequency combs. Optica. 2016;3:499–502. doi: 10.1364/OPTICA.3.000499. [Cross Ref]

13. Fu ZL, et al. Frequency Up-Conversion Photon-Type Terahertz Imager. Sci. Rep. 2016;6:25383. doi: 10.1038/srep25383. [PMC free article] [PubMed] [Cross Ref]

14. Gellie P, et al. Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation. Opt. Express. 2010;18:20799–20816. doi: 10.1364/OE.18.020799. [PubMed] [Cross Ref]

15. Liu HC. Noise Gain and Operating Temperature of Quantum-Well Infrared Photodetectors. Appl. Phys. Lett. 1992;61(22):2703. doi: 10.1063/1.108115. [Cross Ref]

16. Guo XG, Cao JC, Zhang R, Tan ZY, Liu HC. Recent Progress in Terahertz Quantum-Well Photodetectors. IEEE J. Sel. Top. Quantum Electron. 2013;19(1):8500508. doi: 10.1109/JSTQE.2012.2201136. [Cross Ref]

17. Grant PD, Dudek R, Buchanan M, Liu HC. Room-temperature heterodyne detection up to 110 GHz with a quantum-well infrared photodetector. IEEE Photon. Technol. Lett. 2006;18(21–24):2218. doi: 10.1109/LPT.2006.884267. [Cross Ref]

18. Liu HC, Li JM, Buchanan M, Wasilewski ZR. High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique. IEEE J. Quantum Electron. 1996;32:1024–1028. doi: 10.1109/3.502380. [Cross Ref]

19. Barbieri S, et al. 13 GHz direct modulation of terahertz quantum cascade lasers. Appl. Phys. Lett. 2007;91(14):143510. doi: 10.1063/1.2790827. [Cross Ref]

20. Hinkov B, Hugi A, Beck M, Faist J. Rf-modulation of mid-infrared distributed feedback quantum cascade lasers. Opt. Express. 2016;24:3294–3312. doi: 10.1364/OE.24.003294. [PubMed] [Cross Ref]

21. Scalari G, Hoyler N, Giovannini M, Faist J. Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction. Appl. Phys. Lett. 2005;86:181101. doi: 10.1063/1.1920407.[Cross Ref]

22. Wienold M, et al. Low-threshold terahertz quantum-cascade lasers based on GaAs/Al0.25Ga0.75As heterostructures. Appl. Phys. Lett. 2010;97:071113. doi: 10.1063/1.3480406. [Cross Ref]

23. Wan WJ, Li H, Zhou T, Cao JC. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation. Sci. Rep. 2017;7:44109. doi: 10.1038/srep44109. [PMC free article][PubMed] [Cross Ref]

24. Li H, et al. Dynamics of ultra-broadband terahertz quantum cascade lasers for comb operation. Opt. Express. 2015;23(26):33270. doi: 10.1364/OE.23.033270. [PubMed] [Cross Ref]

25. Barbieri S, et al. Imaging with THz quantum cascade lasers using a Schottky diode mixer. Opt. Express. 2005;13:6497–6503. doi: 10.1364/OPEX.13.006497. [PubMed] [Cross Ref]

26. Khosropanah P, et al. Phase locking of a 2.7 THz quantum cascade laser to a microwave reference. Opt. Lett. 2009;34:2958–2960. doi: 10.1364/OL.34.002958. [PubMed] [Cross Ref]

27. Barbieri S, et al. Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser. Nat. Photonics. 2010;4:636–640. doi: 10.1038/nphoton.2010.125. [Cross Ref]

28. Ravaro M, et al. Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling. Appl. Phys. Lett. 2013;102:091107. doi: 10.1063/1.4793424. [Cross Ref]

29. Zhang R, Fu ZL, Gu LL, Guo XG, Cao JC. Terahertz quantum well photodetectors with reflection-grating couplers. Appl. Phys. Lett. 2014;105(23):231123. doi: 10.1063/1.4904221. [Cross Ref]

30. Zhang R, et al. Terahertz quantum well photodetectors with metal-grating couplers. IEEE J. Sel. Top. Quantum Electron. 2017;23(4):3800407. doi: 10.1109/JSTQE.2016.2608618. [Cross Ref]

31. Palaferri D, et al. Patch antenna terahertz photodetectors. Appl. Phys. Lett. 2015;106(16):161102. doi: 10.1063/1.4918983. [Cross Ref]

32. Peytavit E, Coinon C, Lampin JF. A metal-metal Fabry-Pérot cavity photoconductor for efficient GaAs terahertz photomixers. J. Appl. Phys. 2011;109(1):016101. doi: 10.1063/1.3525709. [Cross Ref]

33. Rogalski A, Sizov F. Terahertz detectors and focal plane arrays. Opto-Electronics Review. 2011;19(3):346–404. doi: 10.2478/s11772-011-0033-3. [Cross Ref]

34. Hussin R, Chen YX, Luo Y. Thin-film single-crystal Schottky diodes for IR detection and beyond. IEEE Trans. Electron Dev. 2016;63(10):3971–3976. doi: 10.1109/TED.2016.2598177. [Cross Ref]

35. Ito H, Ishibashi T. InP/InGaAs Fermi-level managed barrier diode for broadband and low-noise terahertz-wave detection. Jpn. J. Appl. Phys. 2017;56:014101. doi: 10.7567/JJAP.56.014101. [Cross Ref]

36. Zhang W, et al. Quantum noise in a terahertz hot electron bolometer mixer. Appl. Phys. Lett. 2010;96(11):111113. doi: 10.1063/1.3364936. [Cross Ref]

37. Shcheslavskiy V, et al. Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector. Rev. Sci. Instrum. 2016;87:053117. doi: 10.1063/1.4948920.[PubMed] [Cross Ref]

38. Virginia Diodes, Inc. http://vadiodes.com/en/products/mixers.

39. Hubers HW. Terahertz heterodyne receivers. IEEE J. Sel. Top. Quantum Electron. 2008;14(2):378–391. doi: 10.1109/JSTQE.2007.913964. [Cross Ref]

40. Hayton, D. J. et al. A 4.7 THz HEB/QCL heterodyne receiver for STO-2. 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Tucson, Arizona, 2014.

41. Gu LL, et al. Terahertz quantum well photo-detectors: grating versus 45 degrees facet coupling. J. Phys. D: Appl. Phys. 2014;47(16):165101. doi: 10.1088/0022-3727/47/16/165101. [Cross Ref]


相关文章

研究提出紧凑型太赫兹三光梳光源实现方案

近日,中国科学院上海微系统与信息技术研究所研究员黎华团队与华东师范大学教授曾和平团队合作,在太赫兹(THz)三光梳光源研究方面取得进展。该研究提出了紧凑型太赫兹三光梳光源的实现方案,构建了由三个太赫兹......

氮化镓基无源太赫兹相控阵机制研究获进展

随着无线通信技术的发展,太赫兹波因超宽带、高定向性和高分辨率等优势,成为6G通信的重要频谱资源。然而,频率升高带来的路径损耗加剧和信号源输出功率降低等问题,使系统对高精度、低损耗、大视场的波束控制器件......

氮化镓基无源太赫兹相控阵机制研究获进展

随着无线通信技术的发展,太赫兹波因超宽带、高定向性和高分辨率等优势,成为6G通信的重要频谱资源。然而,频率升高带来的路径损耗加剧和信号源输出功率降低等问题,使系统对高精度、低损耗、大视场的波束控制器件......

太赫兹声子极化激元产生及相干调制机理研究获进展

近日,中国科学院上海光学精密机械研究所研究团队在太赫兹驱动声子极化激元产生及相干调制机理方面取得进展。高速信号调制技术是光通信、数据中心、量子计算等领域的核心。近年来,硅基和铌酸锂基两大技术路线在材料......

太赫兹和声波结合使无针血钠检测成为可能

近日,天津大学研究人员开发了一种新型太赫兹光声系统,该系统克服了水干扰,无需抽血或标记便可实现对活体小鼠钠水平的实时测量,并通过人体实验,初步验证了走向临床应用的潜力与可行性。据悉,该成果突破了太赫兹......

基于超导混频接收的太赫兹通信研究取得新成果

6月5日,《国家科学评论》(NationalScienceReview)在线发表了题为Achieving500-GHzcommunicationover1.2kmusinganastronomical......

基于超导混频接收的太赫兹通信研究取得新成果

6月5日,《国家科学评论》(NationalScienceReview)在线发表了题为Achieving500-GHzcommunicationover1.2kmusinganastronomical......

高瓴创投出手!太赫兹技术企业太景科技完成A轮融资

高瓴创投又出手了,投资了一家致力于研究电磁波“全能选手”的高新技术企业。近日,太景科技(南京)有限公司(以下简称太景科技)宣布完成数千万元A轮融资,由高瓴创投(GLVentures)领投,深圳中小担创......

金属所等关于稀土金属增强太赫兹辐射强度的研究获进展

太赫兹(THz)是一种频率介于微波和红外频率之间的电磁波。然而,目前缺乏高效率、高集成度以及易调制的太赫兹辐射源。传统太赫兹产生方式如光电导天线和电光晶体法,存在着太赫兹能量低、带宽小、成本高和波长依......

超宽带太赫兹偏振复用器问世

科技日报北京9月3日电 (记者张佳欣)澳大利亚阿德莱德大学领导的国际团队开发出首个基于无基板硅基的超宽带集成太赫兹偏振复用器,并在亚太赫兹J波段(220—330GHz)中对其进行了测试,该波......