发布时间:2021-03-01 17:15 原文链接: 光合作用测定仪的原理、发展历史、特点

光合作用测定仪又叫光合仪,是测定气体CO2浓度、空气温湿度,植物叶片温度,光强,气体流量等要素,并计算出植物的光合(呼吸)速率、蒸腾速率、细胞间CO2浓度和气孔导度四大光合作用指标的仪器。
光合作用的重要性
1、把无机物转变成有机物
绿色植物合成的有机物质,可直接或间接作为人类或全部动物界的食物(如粮、油、糖等和牧草饲料、鱼饵等),也可以作为某些工业的原料(如棉、麻、橡胶、糖等)。换句话说,今天人类所吃的食物和某些工业原料,都是直接或间接地来自光合作用。
2、蓄积太阳能
光合作用形成的有机物所贮藏的化学能,除了供植物本身和全部异养生物之用外,更重要的可供人类营养和活动的能量来源。人类所利用的能源,如煤炭、天然气、木材等等,都是现在或过去的植物通过光合作用形成的。因此,光合作用是今天能量的主要来源。
3、环境保护
从清除空气中过多的CO2和补充消耗掉O2的角度来衡量,绿色植物被认为是一个自动的空气净化器。
光合作用的研究在理论上和实践上都具有重要的意义。光合作用是地球上普遍存在而又特有的一个过程,是其它生物生存的基础。光合作用测定仪有助于加深对光合作用的研究。
光合作用测定仪的原理
测定光合速率的方法很多,但应用多是根据CO2的吸收测定光合速率。光合作用测定仪利用红外线CO2气体分析仪法测定光合速率。
1、CO2测定
红外线气体分析根据由异原子组成的具有偶极矩的气体分子如CO2、CO、H2O、SO2、CH3、NH4、NO等在2.5~25um的红外光区都有特异的吸收带,CO2在中段红外区的吸收带有4处,其中4.26um的吸收带强,而且不与H2O相互干扰。红外线CO2分析就是通过检测CO2对4.26um光谱的吸收来测定光合作用过程中CO2的变化量。因为CO2吸收的4.26um红外光能与其吸收系数(K)、气体的浓度(C)和测定的气室长度(L)有关,并服从比尔一兰伯特定律:E=Eoe-KCL
因为测定仪在设计过程中将确定了Eo(初级始发能量)和L(气室长度),-K,e为常数,而E(测定未端的能量)就有了与C(被测气体浓度)的对应关系,通过测定E就可测定出CO2浓度。
红外线CO2分析的优点:①灵敏度高,可以测定到1.0、0.5甚至0.1uml·mol-1(即ppm)的CO2浓度;②反应快速,响应时间短,可测定出光合速率瞬时变化;③易实现自动化,智能化的测定。
光合作用测定仪采用单片机的智能管理技术,除了监测光合作用过程中的CO2变化外,还测定相应的光合有效辐射、温度,并根据这些测定参数自动计算出相应的光合速率(Pn),水分利用率,气孔导度。
2、温度测定原理
温度传感器应用高精度传感器,测温电路应用三线制经典恒流源测温电路。
3、光合有效辐射测定
光合有效辐射(PAR)是指植物吸收并参与光化学反应的太阳辐射光谱成份。一般光谱范围多采用400~760nm,该技术原理为:PAR测定采用多层叠加滤光和光敏半导技术,即采用硅光电二极管,利用光生伏应将光能转化为电能,在光照照射下能在P区和N区之间形成光生电动势,把PN结连接起,电路中就有电流流过,电流大小与光照强度成相关性。
光合作用测定仪优点是稳定性好和重现性好,动态范围宽,温湿度特性优良和几乎没有疲劳特性。硅光电二极管的短路电流与光照强度有较好的线性关系,当选择适当的滤光片对光谱进行选择,则硅光电二极管输出电流即和所选光谱的光强呈线性关系。
光合作用测定仪的发展历史
简单配置阶段:
光合作用测定仪在20世纪50年代初开始应用,其配置相对简单,只有叶室(或同化箱)及相应气路和气泵等配置,采取人工直接读数和计算。
复杂配置阶段:
为了增加测定速度,实现多点测定,光合作用测定仪配置了多路转换和相应的记录装置,以达到一机多点多通道测定。此外,为了提高测定精度和能控制测定条件,有的光合作用测定仪配置了叶室的环境控制系统。
便携式多功能智能化阶段:
这一阶段的产生是由于单片机、集成电路和传感技术发展的结果,在20世纪80年代中期投放市场。单片机将光合测定过程中涉及的CO2、温度、湿度、光照强度和流量等参数进行各种运算,大大提高了测定效率。
同时,光合作用测定仪安装了数据贮存卡,可贮存大量的测试数据。通过附加叶室、温度、相对湿度、光照强度、CO2浓度控制系统,来调控环境因素;光合作用测定仪的制作特点为体积小、重量轻、测速快、功能多、操作方便,特别适合野外测定。
光合作用测定仪的特点
1、光合仪利用数据采集仪和二氧化碳分析仪及叶室之间进行通信,接收各传感器采集的实时数据,数据采样周期快,计算准确。可测定植物的光合(呼吸)速率、蒸腾速率、气孔导度。
2、光合仪软件界面友好,对各种传感器进行实时曲线显示,操作简便。
3、光合仪交直流两用,使用时间长。而且可以配备太阳能电池板,便于野外充电。
4、光合仪功能多,可以根据自己的需要进行闭路光合,闭路呼吸,开路呼吸及环境因子lianxi采集记录。
5、光合仪叶室设计小巧,具有适合各种叶片的叶室配件。
6、光合仪使用方便。体积小、重量轻,可随身携带。气路和电路连接明确,操作方式及测定、计算结果可以明确地显示出来。

相关文章

人工分子能模仿自然光合作用为太阳能转化为碳中和燃料开辟新路径

瑞士巴塞尔大学研究团队在人工光合作用领域取得重要进展:他们开发出一种新型人工分子,能够模仿植物自然的光合作用机制,在光照条件下同时储存两个正电荷和两个负电荷。这一成果为未来将太阳能转化为碳中和燃料提供......

我国团队领衔揭秘深海生存之道:化学反应取代光合作用

在终年不见阳光的海洋深处,无法进行光合作用的生命体如何获得能量?中国科学院深海科学与工程研究所(深海所)科研人员领衔的国际合作团队最新在太平洋西北部最深9533米处的海沟底部,发现能从化学反应中获得能......

分子笼光控催化发散合成取得进展

自然界的光合作用系统通过精妙的光控机制实现能量与物质的高效转化,而人工模拟这一过程始终是化学领域的重大挑战。传统光开关催化剂多局限于活性“启停”控制,难以在单一催化剂内实现产物路径的主动切换。金属有机......

科研团队开发出用于提升作物光合作用效率的新型碳点材料

近日,中国农业科学院农业环境与可持续发展研究所节水新材料与农膜污染防控创新团队开发出用于提升作物光合作用效率的新型碳点材料,拓宽了作物叶绿体的吸收光谱范围,增强了植物光合作用效率(相比对照组,净光合速......

研究发现植物光形态建成的表观遗传调控机制

光是植物光合作用的能量来源。作为重要的环境信号,光广泛参与调控植物生长发育的各个阶段。当植物幼苗出土见光后,光信号迅速激活光形态建成,表现为下胚轴生长抑制、子叶张开变绿以启动光合作用。这是植物早期生长......

我国空间站成功开展“人工”光合作用试验

近日,在中国空间站梦天实验舱航天基础试验机柜其中一个“太空抽屉”里,开展了地外人工光合作用技术试验,成功实现了高效二氧化碳转换和氧气再生新技术的国际首次在轨验证,有望为我国未来载人深空探测重大任务奠定......

利用哺乳动物细胞有可能实现光合作用

据日媒10月31日报道,由东京大学与日本理化学研究所科学家组成的一个研究团队称,他们使用仓鼠的细胞进行实验,实现了部分光合作用。光合作用是指植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时......

光合作用实验将“登陆”空间站,拟探索微重力对植物生长的影响

据物理学家组织网3日报道,美国国家航空航天局(NASA)计划通过近日在佛罗里达州卡纳维拉尔角发射的“猎鹰9”号火箭,将一项光合作用实验带到国际空间站。这项实验由美国能源部下属太平洋西北国家实验室设计。......

光合作用实验将“登陆”空间站

据物理学家组织网3日报道,美国国家航空航天局(NASA)计划通过近日在佛罗里达州卡纳维拉尔角发射的“猎鹰9”号火箭,将一项光合作用实验带到国际空间站。这项实验由美国能源部下属太平洋西北国家实验室设计。......

光合作用实验将“登陆”空间站

据物理学家组织网3日报道,美国国家航空航天局(NASA)计划通过近日在佛罗里达州卡纳维拉尔角发射的“猎鹰9”号火箭,将一项光合作用实验带到国际空间站。这项实验由美国能源部下属太平洋西北国家实验室设计。......