中佛罗里达大学的研究人员正在开发新的光子材料,这些材料有朝一日可能被用来实现超快、低功率的光基计算。这种独特的材料被称为拓扑绝缘体,类似于被翻转过来的电线,绝缘体在里面,而电流沿着外部流动。

为了避免今天越来越小的电路所遇到的过热问题,拓扑绝缘体可以被纳入电路设计中,以便在不产生热量的情况下将更多的处理能力装入特定的区域。
研究人员的最新研究于4月28日发表在《自然-材料》杂志上,提出了一种制造材料的全新工艺,该工艺利用了独特的链状蜂巢晶格结构。研究人员用激光在一块二氧化硅上蚀刻了这种相连的蜂窝状图案,这种材料通常用于创建光子电路。
该设计的节点使研究人员能够在不弯曲或拉伸光子线的情况下调节电流,而这是在电路中引导光的流动,从而引导信息的需要。
新的光子材料克服了当代拓扑设计的缺点,这些设计提供了较少的功能和控制,同时通过最小化功率损失支持信息包更长的传播长度。
研究人员设想,由双态拓扑绝缘体引入的新设计方法将导致脱离传统的调制技术,可以使基于光的计算技术离现实更近一步。
拓扑绝缘体有朝一日也能带来量子计算的进步,因为它们的特性可以用来保护和驾驭脆弱的量子信息比特,从而使处理能力比今天的传统计算机快上亿倍。研究人员利用先进的成像技术和数值模拟证实了他们的发现。
加州大学光学和光子学学院的博士后研究员、该研究的主要作者Georgios Pyrialakos说:"双态拓扑绝缘体在光子电路的设计中引入了一个新的范式转变,使光包的安全传输损失最小。"
该研究的下一步包括在晶格中加入非线性材料,这些材料可以实现对拓扑区域的主动控制,从而为光包创建定制的路径,UCF光学和光子学学院的教授和研究的共同作者Demetrios Christodoulides表示。
该研究由美国国防部高级研究计划局、海军研究办公室多学科大学倡议、空军科学研究办公室多学科大学倡议、美国国家科学基金会、西蒙斯基金会数学和物理科学部、W. M. 凯克基金会、美国-以色列两国科学基金会、美国空军研究实验室、德国研究基金会以及Alfried Krupp von Bohlen和Halbach基金会资助。
研究作者还包括罗斯托克大学的Julius Beck、Matthias Heinrich和Lukas J. Maczewsky;南加州大学的Mercedeh Khajavikhan;以及罗斯托克大学的Alexander Szameit。
Christodoulides在约翰霍普金斯大学获得光学和光子学博士学位,并在2002年加入加州大学。Pyrialakos在希腊塞萨洛尼基亚里士多德大学获得光学和光子学博士学位,并于2020年加入UCF。



8月7日,2025中国化工学会能源、材料与化工学术会议在中国石油兰州石化公司召开,400余名专家、学者齐聚金城兰州,聚焦国家重大战略和产业深度发展需求开展深入交流研讨,共享最新成果,加快推进甘肃省绿色......
据最新一期《科学》杂志报道,美国哈佛大学研究人员开发出一种新型光学器件,即“超表面”,可在单一的平面上完成复杂量子操作。超表面可同时承担多种传统光学元件功能,解决了光子量子信息处理领域长期存在的体积庞......
美国麻省理工学院(MIT)团队开发出一种全自动机器人系统,可大幅加快对新型半导体材料的性能分析和测试速度。这项发表于《科学进展》杂志的技术突破,将极大提升当前对高效太阳能电池板材料的研发进程,还将为下......
红外非线性光学晶体作为激光频率转换的关键器件,在全固态激光器中具有重要的应用。当前商用的红外非线性光学晶体主要包括黄铜矿型化合物如AgGaS2, AgGaSe2和ZnGeP2 等。......
美国莱斯大学科学家领衔的团队在材料领域取得一项突破性进展。他们通过向二硫化钽(TaS2)中掺入微量铟元素,制备出具有特殊电子结构的“克莱默节点线”金属。这项发表于最新一期《自然·通讯》杂志的研究,为开......
自然界中,生物离子通道能够精准筛分离子。这激发了研究人员构筑仿生离子筛分材料的灵感。这些材料可以分离一种阳离子跟其他阳离子,也能够将一种阴离子跟其他阴离子分开,广泛应用于化工和环境领域。用于分离阳离子......
记者从南京航空航天大学获悉,该校李伟伟教授与清华大学南策文院士等共同研制出一种新型介电储能材料,其能量密度是主流商用介电储能材料的数十至数百倍,有望成为下一代高功率脉冲技术的核心器件。国际顶级学术期刊......
金属材料在长期使用过程中产生的疲劳失效是威胁重大工程安全的隐形杀手。经过多年攻关,我国科学家日前破解了这一难题,成功让金属材料在保持高强度、高塑性的同时,还大幅提升了抗疲劳能力。这一成果北京时间4日凌......
有多种成本低且储量丰富的材料,可利用湿度变化,直接从空气中捕碳。图片来源:美国西北大学美国西北大学科学家开展的一项最新研究表明,有多种成本低且储量丰富的材料,可利用湿度变化,直接从空气中捕碳。他们称之......
金属是重要的基础材料,广泛应用于建筑、能源、交通等领域。但当金属受到非对称的循环外力时,会产生塑性变形,塑性变形逐渐累积就会形成“棘轮损伤”。这种损伤会导致金属突然断裂,严重威胁工程安全。为了攻克这一......