发布时间:2015-09-14 10:59 原文链接: 光子能通过自身特殊力组成“分子”

  概念示意图显示:在特定条件下,光子能组合成一种“双原子分子”的状态。中间哑铃型代表两个光子以波的形式结合在一起,间隔一定距离。

  以往人们认为,《星球大战》中绝地武士用的光剑是磁场约束下的等离子体,而不是由光子构成。一个由美国国家标准与技术研究所(NIST)和马里兰州多家大学科学家组成的研究团队最近发现,无质量的光粒子可以通过自身特殊的力结合成一种“分子”,虽然还达不到光剑的程度,却向着用光构造物体迈进了一步。

  2013年,来自哈佛大学、加州理工大学和麻省理工学院的科学家合作发现了一种方法,成功在光飞行过程中把两个光子结合在一起,使其中一个“坐”在另一个上面,形成重叠。该实验被认为是一项突破,因为此前还没人能把单个光子结合。

  新发现建立在以往多个团队的研究基础之上。据物理学家组织网近日报道,NIST与同行团队联合,从理论上证明了只需调整结合过程中的几个参数,光子就会“肩并肩”地彼此间隔一定距离飞行,就像两个氢原子结合成一个氢分子那样。NIST的阿莱克斯·戈什科夫说:“本质上这并不是一种分子,只是有类似的结构。我们正在学习如何构建复杂的光态,然后是构建更复杂的物体。这是第一次证明了如何把两个光子以有限距离结合在一起。”

  至于造出光分子后能否造出一把光剑的问题,戈什科夫认为,这在短期内还不太可能,主要是因为将光子结合在一起所需的极端条件无法用普通实验设备达到,但造出光分子在其他方面很有用。

  如果能设计操纵光子之间的相互作用,将会大大改进从通讯到高清成像领域的许多技术。如用来精确校准光传感器的仪器,新发现能更容易地造出一种“标准亮度”,在检测时发出精确数目的光子。在工业方面,将光子结合并纠缠在一起,有望造出用光子作信息处理的“光子计算机”,而且数据传输和处理都能直接以光子操作的话,将会减少大量能耗。

  相关论文将发表在最近的《物理评论快报》上。

相关文章

压力会在分子层面改变心脏功能

美国加州大学戴维斯分校一项新研究揭示,压力不仅影响大脑,还会在分子层面改变心脏功能。相关论文发表于最新一期《分子与细胞心脏病学杂志》。图片来源:物理学家组织网这项研究聚焦于环境与社会压力因素,如噪音、......

“超表面”器件能集成光子量子操作

据最新一期《科学》杂志报道,美国哈佛大学研究人员开发出一种新型光学器件,即“超表面”,可在单一的平面上完成复杂量子操作。超表面可同时承担多种传统光学元件功能,解决了光子量子信息处理领域长期存在的体积庞......

中外研究团队利用“分子捕手”为未知化合物“上户口”

化合物结构测定能够帮助人们认识、利用和改进药物和天然产物中的有效成分。由浙江大学、美国得克萨斯大学奥斯汀分校及浙江师范大学、南京大学学者组成的联合研究团队提出“超分子对接”概念,利用“分子捕手”,特异......

科学家发现新型有机金属分子“锫茂”

美国能源部劳伦斯伯克利国家实验室科学家领导的团队首次发现一种含有锫(Berkelium)的有机金属分子——“锫茂”(Berkelocene),为深入理解物质构成的基本原则开辟了新途径。相关研究论文发表......

我国学者在分子探针活体研究方面取得进展

图(a-c)可级联响应肿瘤微环境的分子组装探针及其研究示意图;(d,e)小鼠模型上原位胰腺癌的荧光成像与信号强度变化在国家自然科学基金项目(批准号:22274074、2137003)等资助下,南京大学......

科学家研发出可让“大分子”顺利通行的“超级筛子”

近日,中国科学院青岛生物能源与过程研究所的科研团队研发出一种新型材料——ZMQ-1分子筛,解决了传统材料无法处理“大分子”的难题,在促进化工生产更加绿色、高效等方面有广阔应用前景。该成果北京时间12月......

【预约直播】第六届糖复合物研究前沿网络学术大会

——探索生命奥秘新途径为促进我国糖复合物领域的合作交流,加快国内糖科学的发展 ,由中国生物化学与分子生物学会糖复合物专业分会、复旦大学/卫健委糖复合物重点实验室主办 ,分析测试百科......

这一研究为未来分子电子器件研发提供新方向

近日,电子科技大学光电科学与工程学院教授郑永豪团队在《科学进展》在线发表了最新科研进展。这项研究创新性地提出了“off-siteradicalsinjection”的概念,利用先进的单分子结技术,实现......

我国学者在光子力学显微镜研究方面取得新进展

图利用超分辨光子力学显微镜测量单纳米颗粒受电场力在国家自然科学基金项目(批准号:U23A20481、62275010、52073006)等资助下,北京航空航天大学物理学院王帆教授和钟晓岚教授团队联合生......

一种超分子聚合玻璃问世

探索无机成分以外的玻璃是人造透明材料发展的新方向,受聚合物和超分子玻璃的启发,科研人员探索通过低分子量单体的聚合制备透明玻璃。中国农业科学院麻类研究所可降解材料开发与利用创新团队联合有关单位,构建了一......