将叶绿素溶液盛于试管内,在透射光下看呈绿色,在反射光下看呈深红色(叶绿素 a为血红光,叶绿素b为棕红光),这种现象叫荧光现象。荧光现象产生的原因大致如下:
光具有波粒二象性,对光合作用有效的可见光的波长是在400—700 nm之间,同时光又 是一粒一粒地运动着的粒子流,每一粒子叫一个光子,光子所具有的能量,叫做光量子。光子携带的能量与光的波长成反比。每摩尔光量子具有的能量如下:
E=N hυ=Nhc/λ
式中E为能量(千卡),N为阿伏加德罗常数(6.02×1023),h为普朗克常数(6.6262×10-34JS),υ为频率(s-1),c是光速(2.9979×108m s-1),λ是波长(nm)。每摩尔光量子的能量通常是以千卡或爱因斯坦来表示。
当叶绿素分子吸收光量子后,就由低能级的基态提高到了一个高能级的激发态(图7-8)。,根据波尔(Bohr)理论,电子从近核低能轨道跃到远核高能轨道上为激发态(第一、二单线态),激发态的叶绿体分子极不稳定,又迅速由激发态恢复到基态,同时向空间发射光子,称为荧光。恒温下,荧光的光子要比吸收的光子能量低,所以放出的波长更长、颜色更红些,因而使叶绿素溶液在入射光下呈绿色,而在反射光下呈红色。
叶绿素的荧光现象说明叶绿素能被光所激发,而叶绿素分子的激发是其能将光能转变为化学能的前提。在整体植物中,叶绿素所吸收的光能被用于光合作用,因此看不到荧光现象。
当荧光出现后,立即中断光源,色素分子仍能持续短时间的放出“余辉”,称磷光现象。这种现象的原因是处于第一单线态的激发态的叶绿素分子,先以热能的形式丢失掉一部能量,转为一种亚稳定态(第一三线态),从亚稳定态回到基态时放出的光子便为磷光,其寿命比荧光长(荧光为10-9s,磷光为10-3—10-2s),但比荧光弱。
北京时间2023年10月6日,西湖大学生命科学学院李小波团队在Science发表题为“Achlorophyllcsynthasewidelyco-optedbyphytoplankton”的文章,首次......
从西湖大学获悉,该校生命科学学院特聘研究员闫浈实验室的相关研究揭开了叶绿体蛋白转运之谜,其研究结果在线发表于《细胞》期刊。“光合作用被称为地球上最重要的化学反应。”闫浈介绍,叶绿体作为光合作用的重要场......
近日,中国农业科学院草原研究所草种质资源与育种团队揭示了碱处理抑制燕麦叶绿素积累的分子机制,相关研究成果发表在《植物科学前沿(FrontiersinPlantScience)》上。土地盐碱化是我国面临......
叶绿素,是植物进行光合作用的主要色素,是一类含脂的色素家族,位于类囊体膜。叶绿素吸收大部分的红光和紫光但反射绿光,所以叶绿素呈现绿色,它在光合作用的光吸收中起核心作用。叶绿素为镁卟啉化合物,包括叶绿素......
叶绿素a浓度是藻类生物量的指示指标,是水质的重要表征参数,也是水环境研究(还是常规监测)必须监测的指标。湖泊叶绿素浓度的调查不仅可以确定水体的营养状态,为湖泊治理和渔业资源管理提供基础信息,而且有助于......
营养盐、叶绿素a和透明度的定量关系是富营养化管理的基础模型,如应用非常广泛的营养状态指数(TSI)就是基于上述关系构建的。然而,湖泊水文形态条件(如换水周期和水深)、物理化学因子(如光照和温度)和生物......
深水湖库往往存在垂向热力分层,决定了溶氧和营养盐等化学因子以及浮游植物和浮游动物等生物因子垂直分层和混合交换,进而深刻影响湖库生态系统结构和功能。在全球变化背景下,气温升高和富营养化加剧对湖库热力分层......
顶复动物亚门(Apicomplexa)是一组专性细胞内寄生虫,包括疟疾和弓形虫病等人类疾病的致病因子。顶复动物亚门是由自由生活的光养性祖先进化而来的,但是人们对这种向寄生过渡的过程如何发生仍然是不清楚......
科学家们首次发现了一种可产生叶绿素但不参与光合作用的生物体——“corallicolid”,其存在于全球70%的珊瑚中。研究发表于最新一期《自然》杂志,有望为人类更好地保护珊瑚礁提供新线索。加拿大不列......
Apicomplexa(apicomplexanparasites,顶复门寄生虫)是一类专性细胞内寄生虫。一些顶复门寄生虫是人类疾病的致病因子,如疟疾和弓形虫病。Apicomplexans是从光养生物......