5.讨论

MPCS优化的目标是从最初的通过(1)当悬滴法实验不能产生单晶或(2)提高悬滴法实验中产生的单晶的衍射质量筛选蛋白获得蛋白结构。本研究中的29种蛋白,使用MPCS优化得到了6个新的蛋白结构,并提交于PDB,成功率为21%(图s.3a-3f;结晶优化数据见表2)。这种得率与已发表的还原甲基化(Kim et al.,2008)和有限的蛋白质水解(Dong et al., 2007)数据相比毫不逊色。在两种情况下,下游的悬滴法气象扩散试验中的结晶体生长也能得到高质量的衍射(一种情况下,MPCS结晶体的X射线衍射有稍高的分辨率,另一种情况下MPCS结晶体的衍射分辨率要略低一些)。ATCG3D将继续把MPCS应用于整个研究中,这样就出现了商品化的MCPS Plug Maker(图3g)。本研究表明,MPCS技术是为了得到高质量的X射线衍射结果而优化蛋白结晶的成功方法。该技术未来的发展方向是发展包括形成膜蛋白结晶的lipidic cubic phase结晶法(Li et al., 2009)和混合方法(Li et al., 2006)(稀疏矩阵+梯度筛选)中蛋白样品的高通量初筛,使MPCS Plug Maker的自动化方式成为可能。

表2:结晶优化数据

†本研究完成后通过下游的研究得到的结构

参考文献:

[1]Baldock, P., Mills, V. & Shaw Stewart, P. (1996). J. Cryst. Growth, 168,170–174.
[2]Cherezov, V., Hanson, M. A., Griffith, M. T., Hilgart, M. C., Sanishvili, R., Nagarajan, V., Stepanov, S., Fischetti, R. F., Kuhn, P. & Stevens,R. C. (2009). J. R. Soc. Interface, 6 Suppl. 5, S587–597.
[3]Cherezov, V., Liu, J., Griffith, M., Hanson, M. A. & Stevens, R. C.(2008). Cryst. Growth Des. 8, 4307–4315.
[4]D’Arcy, A., Mac Sweeney, A., Stihle, M. & Haber, A. (2003). Acta Cryst. D59, 396–399.
[5]Dhouib, K., Khan Malek, C., Pfleging, W., Gauthier-Manuel, B., Duffait, R., Thuillier, G., Ferrigno, R., Jacquamet, L., Ohana, J.,Ferrer, J. L., Teheobald-Dietrich, A., Giege, R., Lorber, B. &Sauter, C. (2009). Lab-On-A-Chip, 9, 1412–1421.
[6]Dong, A. et al. (2007). Nat. Methods, 4, 1019–1021.
[7]Fox, B. G., Goulding, C., Malkowski, M. G., Stewart, L. & Deacon, A.(2008). Nat. Methods, 5, 129–132.
[8]Gerdts, C. J., Elliott, M., Lovell, S., Mixon, M. B., Napuli, A. J., Staker, B. L., Nollert, P. & Stewart, L. (2008). Acta Cryst. D64, 1116–1122.
[9]Gerdts, C. J., Tereshko, V., Yadav, M. K., Dementieva, I., Collart, F.,Joachimiak, A., Stevens, R. C., Kuhn, P., Kossiakoff, A. & Ismagilov, R. F. (2006). Angew. Chem. Int. Ed. 45, 8156–8160.
[10]Hansen, C. L. & Quake, S. R. (2003). Curr. Opin. Struct. Biol. 13, 538–544.
[11]Hansen, C. L., Skordalakes, E., Berger, J. M. & Quake, S. R. (2002). Proc. Natl Acad. Sci. USA, 99, 16531–16536.
[12]Kim, Y. et al. (2008). Nat. Methods, 5, 853–854.
[13]Li, L., Du, W. & Ismagilov, R. F. (2010). J. Am. Chem. Soc. 132, 112–119. Li, L., Fu, Q., Kors, C. A., Stewart, L., Nollert, P., Laible, P. D. & Ismagilov, R. F. (2009). Microfluidics Nanofluidics, 8, 789–798.
[14]Li, L., Mustafi, D., Fu, Q., Tereshko, V., Chen, D. L., Tice, J. D. & Ismagilov, R. F. (2006). Proc. Natl Acad. Sci. USA, 103, 19243–19248.
[15]Ng, J. D., Clark, P. J., Stevens, R. C. & Kuhn, P. (2008). Acta Cryst.D64, 189–197.
[16]Ng, J. D., Stevens, R. C. & Kuhn, P. (2008). Methods Mol. Biol. 426,363–376.
[17]Sauter, C., Dhouib, K. & Lorber, B. (2007). Cryst. Growth Des. 7,2247–2250.
[18]Zheng, B., Gerdts, C. J. & Ismagilov, R. F. (2005). Curr. Opin. Struct. Biol. 15, 548–555.
[19]Zheng, B., Roach, L. S. & Ismagilov, R. F. (2003). J. Am. Chem. Soc.125, 11170–11171.