发布时间:2017-03-17 14:29 原文链接: 化学所在漆酶生物电化学和电催化研究方面取得进展

  漆酶作为一种多铜族氧化酶,因其能够实现在较低过电位下对氧气分子的电化学催化还原,因而在生物燃料电池和生物电化学的传感研究领域中备受关注。和其他生物酶相似,漆酶具有复杂的分子结构,其活性中心的铜离子(氧化酚类底物的T1铜离子和还原氧气的T2-T3铜簇,图1)深埋于酶分子的内部。这些特点决定了在常规的电化学体系中,很难实现漆酶分子的直接电子转移和基于此的生物电化学催化,尽管这些研究在生物电化学的基础和应用研究中具有极其重要的意义。

  中国科学院化学研究所活体分析化学实验室毛兰群课题组研究人员较早即致力于漆酶的电化学和基于此的生物燃料电池的研究。他们率先发现漆酶可以在碳纳米管电极上实现其与电极间的直接电子转移(Electroanalysis 2006, 18, 587-594)。进一步,他们利用此性质,成功地研制了基于漆酶直接电催化的生物燃料电池(Adv. Mater. 2006, 18, 2639; Electrochem. Commun. 2007, 9, 989; Electrochem. Commun. 2008, 10, 851; Fuel Cells 2009, 1, 85)。

  近期,在国家自然科学基金委、科技部、中科院和中国博士后基金的支持下,他们在漆酶直接电催化氧还原研究方面取得了新进展。在通常条件下,漆酶在碳纳米管表面的取向是随机的和无序的,仅有少量漆酶分子能够实现其与电极间的直接电子传递。研究发现,在制备漆酶-碳纳米管复合物的过程中,20%乙醇溶液的加入可以明显提高所制备的电极对于氧气电化学催化的电流。结合蛋白结构解析等,他们揭示了乙醇调控漆酶-碳纳米管复合物催化性能的机理,即乙醇可作为桥梁小分子,一方面吸附于碳纳米管表面,提高其浸润性;另一方面,乙醇分子与漆酶蛋白凹槽(直径约1 nm)内靠近T1铜离子的酚类底物结合位点形成氢键,促进了碳纳米管曲面与漆酶凹槽的对接,通过优化蛋白在碳纳米管上的取向,进而促进了铜离子活性中心与电极间的高效直接电子传递(图2)。进一步,他们发现,有机溶剂的调控作用与其极性、致酶变能力以及蒸汽压等密切相关。其中,同样具有较低极性、弱致酶变能力、高蒸汽压的丙酮和乙腈也能够增加电极对于氧气的电化学催化电流。相反,具有较高极性、强致酶变能力、低蒸汽压的二甲基甲酰胺和二甲亚砜,则会导致电极对于氧气的电化学还原几乎失去活性。相对于已报道的提高漆酶电催化活性的方法,利用有机溶剂分子提高漆酶的直接电催化性能则更简单有效。该研究不仅在生物电化学的基础研究中具有重要的意义,而且也为进一步构筑基于生物燃料电池原理的自驱动活体分析与传感奠定了基础。相关成果发表于J. Am. Chem. Soc. 2017, 139, 1565-1574。

图1 漆酶的蛋白分子结构及其直接电催化氧气还原的机理

图2 乙醇调控漆酶在碳纳米管表面的取向和电极对于氧气的生物电化学催化还原性能

相关文章

3.2亿,太原理工大学2025年4月政府采购意向

为便于供应商及时了解政府采购信息,根据《财政部关于开展政府采购意向公开工作的通知》(财库〔2020〕10号)等有关规定,现将太原理工大学2025年4月采购意向公开如下:......

科学家提出低能耗电化学碳捕集新策略

12月30日,中国工程院院士、深圳大学深地科学与绿色能源研究院院长谢和平团队有关“低能耗电化学碳捕集”的最新研究成果发表于《自然—通讯》。随着全球气候变化加剧,如何有效减少大气中的CO2已成为应对气候......

一种创新电化学反应器或可减少空气碳捕获能耗

美国莱斯大学团队开发了一种创新的电化学反应器,或可显著减少直接空气捕获(即从大气中去除二氧化碳)所需的能量消耗。这一新型反应器的设计不仅更加灵活和易于扩展,而且有望成为对抗气候变化、减轻温室气体排放的......

“电化学能源消防安全联合创新”应急管理部重点实验室获批创建

储能作为新型电力系统中的关键一环,发展日益受到关注。项目越建越多、系统越来越复杂,安全事故开始冒头,特别是电化学储能电站起火爆炸事故频现,夯实安全之基迫在眉睫。近日,应急管理部办公厅正式发布《关于批准......

学者综述电池电化学原位传感技术进展

近日,暨南大学物理与光电工程学院(理工学院)研究员郭团受邀在《激光与光子学评论》(Laser&PhotonicsReviews)发表题为《基于“光纤实验室”的电池电化学原位传感技术进展》的特邀......

新策略10倍提升海水制氢经济效益

近期,中国科学院宁波材料技术与工程研究所氢能与储能材料技术实验室研究员陆之毅带领的电化学环境催化团队,通过在两个固体之间引入致密的水合层,使得用于原位海水电解的阴极具有了疏固特性,在天然海水直接电解制......

电化学技术可治疗糖尿病足溃烂

据最新一期《先进功能材料》报道,一个国际科研团队开发出一种治疗慢性伤口的有效方法,不需要使用抗生素,而是使用一种电离气体来激活伤口敷料。研究人员认为,新方法在解决抗生素耐药性病原体方面取得了重大进步,......

电化学10大科学问题首次发布

近日,中国化学会电化学专业委员会(CSE)首次发布“电化学10大科学问题”。电化学是研究电能与化学能以及电能与物质之间相互转换及其规律的科学,并已逐渐发展成为跨越基础科学(理论)和应用科学(工程、技术......

电化学储能研究获进展

近日,陕西科技大学材料科学与工程学院(文物保护科学与技术学院)碳基功能材料创新团队在电化学储能研究领域取得进展,相关研究成果发表于AdvancedMaterials上。这种超薄的HEA层为无枝晶负极提......

苏州医工所在纳米碰撞电化学传感研究中获进展

纳米电化学的核心问题之一是测量界面的微观化,进而探索和调控纳米尺度下电荷传输和物质传递过程;而微观化引起的电化学限域和界面尺度效应将随之显现。纳米碰撞电化学是利用纳米材料和电极表界面的碰撞信号对纳米材......