发布时间:2020-05-25 09:58 原文链接: 半导体封装行业的热分析应用

  半导体业务中的典型供应链, 显示了需要材料表征、材料选择、质量控制、工艺优化和失效分析的不同工艺步骤
 

  热分析在半导体封装行业中有不同的应用。使用的封装材料通常是环氧基化合物(环氧树脂模塑化合物、底部填充环氧树脂、银芯片粘接环氧树脂、圆顶封装环氧树脂等)。具有优异的热稳定性、尺寸稳定性以及良好户外性能的环氧树脂非常适合此类应用。固化和流变特性对于确保所生产组件工艺和质量保持一致具有重要意义。
 

  通常,工程师将面临以下问题:
 

  特定化合物的工艺窗口是什么?
 

  如何控制这个过程?
 

  优化的固化条件是什么?
 

  如何缩短循环时间?
 

  珀金埃尔默热分析仪的广泛应用可以提供工程师正在寻找的答案。
 

  差示扫描量热法(DSC)
 

  此项技术适合分析环氧树脂的热性能,如图1所示。测量提供了关于玻璃化转变温度(Tg)、固化反应的起始温度、固化热量和工艺终温度的信息。
 

图 1. DSC曲线显示环氧化合物的固化特征
 

  DSC可用于显示玻璃化转变温度,因为它在给定温度下随固化时间(图2)的变化而变化。
 

图 2. DSC 曲线显示玻璃化转变温度
 

  随着固化时间的延长而逐渐增加
 

  玻璃化转变温度(Tg)是衡量环氧化合物交联密度的良好指标。事实上,过程工程师可以通过绘制玻璃化转变温度与不同固化温度下固化时间的关系图来确定适合特定环氧化合物的工艺窗口(图3)。
 

图 3. 玻璃化转变温度与不同固化温度下的固化时间的关系
 

  如果工艺工程师没有测试这些数据,则生产过程通常会导致产品质量低下,如图4所示。
 

图 4. 玻璃化转变温度与不同固化温度下的固化时间的关系
 

  在本例中,制造银芯片粘接环氧树脂使用的固化条件处于玻璃化转变温度与时间的关系曲线的上升部分(初始固化过程)。在上述条件下,只要固化时间或固化温度略有改变,就有可能导致结果发生巨大变化。
 

  结果就是组件在引脚框架和半导体芯片之间容易发生分层故障。通过使用功率补偿DSC(例如珀金埃尔默的双炉DSC),生成上述玻璃化转变温度与温度 / 时间关系曲线,可确定佳工艺条件。使用此法,即使是高度填充银芯片粘接环氧树脂的玻璃化转变也可以被检测出。这些数据为优化制造工艺提供了极有帮助的信息。
 

  使用DSC技术,可以将固化温度和时间转换至160° C和2.5小时,以此达到优化该环氧树脂固化条件的目的。这一变化使过程稳定并获得一致的玻璃化转变温度值。在珀金埃尔默,DSC不仅被用于优化工艺,而且还通过监测固化产物的玻璃化转变温度值,发挥质量控制工具的作用。
 

DSC 8000 差示扫描量热仪
 

  DSC 还可以用于确定焊料合金的熔点。用DSC分析含有3%(重量比)铜(Cu)、银(Ag)或铋(Bi)的锡合金。图5中显示的结果表明,不同成分的合金具有非常不同的熔点。含银合金在相同浓度(3%(重量比))下熔点低。
 

图 5. DSC:不同焊接合金在不同湿度环境下的熔点分析
 

  热重分析(TGA)
 

  珀金埃尔默热分析仪有助于设计工程师加深对材料选择的理解。例如,珀金埃尔默TGA 8000®(图6)可以检测出非常小的重量变化,并可用于测量重要的材料参数,如脱气性能和热稳定性。这将间接影响组件的可焊性。图7显示了在230°C 和260° C下具有不同脱气性能的两种环氧树脂封装材料。重量损失(脱气)程度越高,表明与引脚框架接触的环氧树脂密封剂的环氧—引脚框架分离概率越高。
 

图 6. 珀金埃尔默TGA 8000
 

图 7. TGA结果显示两种材料具有不同的脱气性能
 

  热机械分析(TMA)
 

  当材料经受温度变化时,TMA可测量材料的尺寸变化。对于固化环氧树脂体系,TMA可以输出热膨胀系数(CTE)和玻璃化转变温度。环氧树脂的热膨胀系数是非常重要的参数,因为细金线嵌入环氧化合物中,并且当电子元件经受反复的温度循环时,高热膨胀系数可能导致电线过早断裂。不同热膨胀系数之间的拐点可以定义为玻璃化转变温度(图8)。TMA还可以用于确定塑料部件的软化点和焊料的熔点。
 

图 8. 显 TMA 4000 测试的典型的 TMA 图
 

  动态力学分析(DMA)
 

  选择材料时,内部封装应力也是关键信息。将DMA与 TMA技术结合,可以获得关于散装材料内应力的定量信息。DMA测量材料的粘弹性,并提供不同温度下材料的模量,具体如图9所示。当材料经历热转变时,模量发生变化,使分析人员能够轻松指出热转变,如玻璃化转变温度、结晶或熔化。
 

图 9. DMA 8000 测试的典型的 DMA 图
 

  热分析仪用于ASTM® 和IPC材料标准试验、质量控制和材料开发。图10显示了一个涉及热分析仪的IPC试验。珀金埃尔默DMA目前已在半导体行业得到广泛应用。
 

图 10. DMA:显示透明模塑化合物的内应力
 

  热分析仪是半导体封装行业的重要工具。它们不仅在设计和开发阶段发挥了重要作用,而且还可用于进行故障分析和质量控制。许多标准方法都对热分析的使用进行了描述(图11)。使用珀金埃尔默热分析仪,用户可以优化加工条件并选择合适的材料以满足性能要求,从而确保半导体企业能够生产出高品质的产品。考虑到此类分析可以节省大量成本,热分析仪无疑是一项“必备”试验设备!
 

图 11. 用于标准方法的热分析仪




相关文章

差示扫描量热仪DSC5+量热新标准

DSC革新新一代量热性能差示扫描量热仪(DSC)测量的是材料由于物理或化学性质变化而发生焓变随温度或时间的关系。DSC5+树立了新标准,提供了卓越的性能和更高效的DSC。METTLERTOLEDODS......

中国科学技术大学半自动微量等温滴定量热仪中标结果

半自动微量等温滴定量热仪一、合同编号:USTC-J-508-2023-00567-0二、合同名称:半自动微量等温滴定量热仪三、项目编号:CG20231201-3056四、项目名称:半自动微量等温滴定量......

量热仪在使用时不点火了是怎么回事?

量热仪点火失败主要原因是点火线路不通、接触不良或短路。当试验时出现点火失败现象时,应检查氧弹,首先检查点火线短是否导通。先用万用表测量氧弹上的两个点火电极间是否导通(对于独头氧弹,测量独头的中心与弹体......

氧弹量热仪测的热值过高是什么原因

测定氧弹发热量的基本原理是:将一定量的式样放在充有过量氧气的氧弹内燃烧,放出的热量被一定量的水吸收,根据水温的升高来计算试样的发热量。要想按照这一原理而能准确地测得试样的发热量,则必须解决两个问题。第......

量热仪有误差怎样调整?

量热仪有误差首选确定一下是否是质量问题。如果确定量热仪没有质量问题,调整量热仪最好的方法就是用苯甲酸重新标定。用苯甲酸来进行标定主要是提高量热仪的测量精度,避免不必要的误差。全自动氧弹量热仪的具体操作......

量热仪不化验怎么回事?

量热仪故障原因有很多种:适用于万能全自动量热仪、全自动量热仪、微机量热仪、微机双控量热仪。1.检查点火失败的步骤及原因分析(1)首先检查试样是否已经燃烧完,如果已经烧完,通常称为假失败。其原因可能是:......

量热仪发热量新公式?

(1)计算烟煤空气干燥基低位发热量公式:Qnet,ad=35859.9—73.7Vad—395.7Aad—702.0Mad+173.6CRC(2)计算无烟煤空气干燥基低位发热量公式:Qnet,ad=3......

现有量热仪对环境的要求

1、实验过程中不要开启门窗,太阳光不能直射实验室房间,空调的出风口不能直接对恒温桶,出风口形成空气对流不能环绕着恒温桶。2、当仪器内水温升高,不能连续进行试验。3、房间内不能有热源。4、仪器试验中人员......

量热仪全天候的意义是什么?

全天候的解释:[all-weather]适于各种天气的;各种天气条件下都适用、都有效或都可运行的。谓不受天气限制,能适应各种复杂的气候条件。全天候量热仪采用创新隔离技术并通过国家发明ZL:1、独立水密......

使用量热仪需要注意什么?

1、全自动量热仪的氧弹应定期进行20MPa水压检查,每年至少一次。2、全自动量热仪使用完毕后应保持表面清洁干燥,用软布将其擦干净,以防腐蚀。如果长期不用时,应将内筒里的水排放掉。3、氧气减压器在使用前......