发布时间:2022-07-25 11:38 原文链接: 半导体砷化硼有望应用到集成电路领域

7月22日,国家纳米科学中心(以下简称纳米中心)研究员刘新风研究团队在《科学》上发表论文,首次在半导体砷化硼中检测到其电子空穴约化迁移率约 1550 cm2/Vs, 这一测量结果与理论预测值的1680 cm2/Vs 非常接近,有望为半导体砷化硼在集成电路领域的应用提供重要基础数据指导。

image.png

利用瞬态反射显微成像测试砷化硼的载流子迁移率示意图

绝佳材料 一票否决?

手机、电脑等电子产品用久了会发烫,是许多人熟悉的体会。随着芯片集成规模不断增大,散热问题成为一个大困扰。科学家把出现这一现象的原因归结为用来制作芯片的半导体材料硅150W/mK的热导率不够高,热导率越高则散热越快。

为此,材料学家一直期待能够找一种具有更高热导率的材料。然而,遗憾的是,如果用铜的热导率400W/mK作为一个标准,具有更高热导率的半导体材料只有氧化石墨烯、碳化硅等寥寥几种。“氧化石墨烯因为层状结构的限制,其热导性质很难应用。碳化硅是三维半导体,现在已经广泛应用,但热导率也仅有500W/mK。”刘新风告诉《中国科学报》。

2018年,《科学》上连续发表3篇论文报道,美国科学家用化学气相沉积方法成功制备出砷化硼。事实上,这一早在1958年提出的化合物却由于理论预测的热导率不高,而一直没能走进人们寻求优秀半导体材料的视野。

直到2013年,随着计算机算力大幅度提高,一批材料的各项性质得到重新预测。有科学家预测砷化硼的热导率可以媲美金刚石的2000W/mK,引发了学界和业界的极大兴趣。

不仅如此,理论预测还表明,砷化硼还具有非常高电子空穴约化迁移率1680 cm2/Vs。“这决定了半导体材料的逻辑运算速度,迁移率越高,则运算速度越快。”岳帅介绍。

这种同时拥有超高热导率和迁移率的半导体材料令人期待不已,在集成电路领域的未来应用将同时实现缓解散热困难和更高的运算速度。

然而,当科学家手握着真实的砷化硼样品后,实测数据却令人喜忧参半。喜的是,样品实测最高热导率为1300W/mK,已经接近硅的10倍。忧的是,2021年的一项研究表明,其迁移率仅仅22 cm2V-1s-1,几乎一票否决了它在半导体领域的可能应用。

困难重重,攀登高峰

一时间,理论预言和实测不一致的结果让材料学家有点懵圈:到底是理论预言错了,还是实测方法有问题?

刘新风介绍,在2021年的这项工作中,科学家采用的是基于“霍尔效应”的传统电学测量方法。“需要在样品上制备上百微米的电极,由于现阶段制备样品的杂质很多,会因为空间分辨率不够而导致误差。”因此,发展出空间分辨率更高的方法实现砷化硼样品的迁移率测量,成为全球科学家争相攀登的科学高峰。

对刘新风课题组而言,这是一项超高难度的工作。首先,样品制备难。休斯顿大学任志锋课题组负责摸索实验条件、生长样品,刘新风课题组和休斯顿大学包吉明课题组则进行纯度表征。几年下来,他们无数次地重复这个过程,不断优化实验条件。

在岳帅的记忆里,苦中作乐是那段时间的真实写照。“样品中含有万分之一的碳杂质,有一次长出一批样品来,一检测居然测到了金刚石的信号!”岳帅回忆,“大家高兴了好半天,没想到用生长砷化硼的方法意外收获了昂贵的钻石。”

开拓疆野,坚持不懈

样品制备好之后,接下来需要做的就是挑选高纯度样品。在科研人员看来,这是一个前人从未涉足过的“无人区”。“砷化硼样品刚刚被制备出来不到5年,它的基本物理性质还不清楚,没有人知道哪一块区域是高纯度的。”刘新风说。

不过,他们一直认真地享受着开拓知识新疆野的冒险家角色,不断尝试通过发光、拉曼光谱、吸收、热导率、X射线衍射、载流子动力学等方法获得材料各方面特征,试图总结出与纯度有关的规律。

长时间的重复工作中对大量样品的反复比较,他们最终确定了综合应用X射线、拉曼和带边荧光信号来判断样品纯度的方法,并基于这种新方法挑选出了高纯样品。

进一步,科研人员自主搭建了一套全新的“超快载流子扩散显微成像系统”。这套系统基于光学原理进行检测,避免了此前需要利用电极导致空间分辨率低的缺陷,实现了实时、原位的观测。

利用这套测量系统,科研人员系统比较了具有不同杂质浓度的砷化硼电子和空穴的扩散速度,首次在高纯样品区域检测到其约化迁移率约 1550 cm2V-1s-1,与理论预测值非常接近。这无疑给未来砷化硼广泛应用在光电器件、电子元件中吃了一颗“定心丸”。

因为曾经具有开发科研仪器的经验,而且课题组也有搭建仪器设备的优良基础和传统,从准备到搭建再到获得完美数据,岳帅只花了2个月时间,感觉“不难”。

不过,科学探索的过程让岳帅觉得并不轻松。“对于基础研究,要做真正有用的东西,结果有可能会出得慢一些,但是坚持下来人间值得!”他说,“刘老师也一直鼓励和支持我们这样去做,言传并且身教”。

纳米中心副研究员岳帅为文章第一作者,休斯顿大学博士田非(现中山大学教授)为共同第一作者。纳米中心研究员刘新风为通讯作者,休斯顿大学教授包吉明和任志锋为共同通讯作者。


相关文章

广东发布2025~2026年度广东省重点领域研发计划“芯片设计与制造”专项申报通知

广东省科学技术厅关于组织申报2025~2026年度广东省重点领域研发计划“芯片设计与制造”专项的通知粤科函资字〔2025〕688号省直有关部门,各地级以上市科技局,各有关单位:为全面贯彻落实党的二十大......

美国豁免部分关税苹果成赢家,但半导体行业要遭殃?

美国东部时间4月11日深夜,美国海关与边境保护局在其官网发布了一则通知:联邦政府决定对智能手机、电脑、芯片等电子产品免除“对等关税”。此次豁免适用于4月5日之后进入美国的电子产品,而此前已支付的“对等......

山西省重点研发计划(半导体与新材料领域)项目申请书形式审查结果公布

2024年度山西省重点研发计划(半导体与新材料领域)项目申请书共接收25项,依据《山西省科技计划项目管理办法》(晋政办发〔2021〕42号)及《关于组织申报2024年度山西省重点研发计划项目的通知》要......

突破!我国高分辨率光谱芯片研制获新进展

近日,中国科学院南京天文光学技术研究所天文光子学团队与上海理工大学团队合作,研制出“级联相位调制波导阵列光谱芯片”,实测分辨率达68000,并采用光谱重构算法,将光谱对比度提升至20dB。该光谱芯片兼......

新型半导体技术造就世界最小LED

记者20日从浙江大学获悉,该校光电科学与工程学院/海宁国际联合学院狄大卫教授和赵保丹研究员团队,成功研发出微米和纳米钙钛矿LED,其降尺寸过程仅造成微弱的性能损耗。其中,最小尺寸仅为90纳米的纳米钙钛......

新型半导体技术造就世界最小LED

“降尺度(Downscaling)”在电子科学中特指缩小基本器件尺寸的过程,引领着计算机科学、信息显示和人机交互等领域的技术革命。对于实现更加微小的器件,科学家们一直保持着不懈的追求。近日,浙江大学光......

实现技术突破!我国成功研制出这一光子芯片

随着人工智能(AI)模型规模的持续扩大,智算芯片间、算力节点间的通信带宽不足的问题愈发突出。传统电子互连方式已难以满足GPU集群、超级计算中心和云计算平台对高速、大容量、高效能数据交换的需求。尤其是在......

复旦大学团队成功研制新型芯片实现超大容量片上光数据传输

日前,复旦大学信息科学与工程学院张俊文研究员、迟楠教授与相关研究团队开展合作,通过精确设计和优化,将多维复用技术引入片上光互连架构,不仅显著提升了数据传输吞吐量,同时在功耗和延迟方面表现卓越,具备极强......

矽电股份:探针台龙头登陆创业板中签号公布

近日,半导体设备领域的龙头企业矽电股份传来喜讯,其首次公开发行股票并在创业板上市的申请已获中国证监会同意注册批复。深市创业板新股矽电股份于3月11日开始网上申购,申购代码为301629,中签号公布日为......

美国要开听证会调查中国传统芯片专家:美国目前处于两难局面

美国贸易代表办公室将在当地时间11日就中国生产的传统芯片(成熟制程芯片)举行听证会,探讨进一步提高相关关税的可能性。据美媒报道,这些芯片被广泛应用于汽车、洗衣机和电信设备等日常用品中。此次调查在美国前......