发布时间:2021-06-06 14:46 原文链接: 叶绿素与光合作用

  光合作用(Photosynthesis)是绿色植物利用叶绿素等光合色素和某些细菌(如带紫膜的嗜盐古菌)利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为储存着能量的有机物,并释放出氧气(细菌释放氢气)的生化过程。同时也有将光能转变为有机物中化学能的能量转化过程。植物之所以被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。通过食用,食物链的消费者可以吸收到植物及细菌所贮存的能量,效率为10%~20%左右。对于生物界的几乎所有生物来说,这个过程是它们赖以生存的关键。而地球上的碳氧循环,光合作用是必不可少的。

  其主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。

  图片

  作用原理

  植物与动物不同,它们没有消化系统,因此它们必须依靠其他的方式来进行对营养的摄取,植物就是所谓的自养生物的一种。对于绿色植物来说,在阳光充足的白天(在光照强度太强的时候植物的气孔会关闭,导致光合作用强度减弱),它们利用太阳光能来进行光合作用,以获得生长发育必需的养分。

  这个过程的关键参与者是内部的叶绿体。叶绿体在阳光的作用下,把经由气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉等物质,同时释放氧气。

  光合作用是将太阳能转化为ATP中活跃的化学能再转化为有机物中稳定的化学能的过程。

    绿色植物通过叶绿体,把光能用二氧化碳和水转化成化学能,储存在有机物中,并且释放出氧的过程。光合作用的第一步是光能被叶绿素吸收并将叶绿素离子化。产生的化学能被暂时储存在三磷酸腺苷(ATP)中,并最终将二氧化碳和水转化为碳水化合物和氧气。

  1864年,德国科学家萨克斯做了这样一个实验:把绿色叶片放在暗处几小时,目的是让叶片中的营养物质消耗掉。然后把这个叶片一半曝光,另一半遮光。过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。这一实验成功地证明了绿色叶片在光合作用中产生了淀粉。

  1880年,德国科学家恩吉尔曼用水绵进行了光合作用的实验:把载有水绵和好氧细菌的临时装片放在没有空气并且是黑暗的环境里,然后用极细的光束照射水绵。通过显微镜观察发现,好氧细菌只集中在叶绿体被光束照射到的部位附近;如果上述临时装片完全暴露在光下,好氧细菌则集中在叶绿体所有受光部位的周围。恩吉尔曼的实验证明:氧是由叶绿体释放出来的,叶绿体是绿色植物进行光合作用的场所。

  将一片脱去淀粉的紫罗兰叶片放在阳光下数小时之后用碘试剂检测,可以发现只有叶片上绿色的区域变色而白色区域没有,也就是说只有绿色区域有淀粉存在。这显示了光合作用在缺乏叶绿素的情况下无法进行,叶绿素存在是光合作用的必要条件。

  在植物衰老和储藏过程中,酶能引起叶绿素的分解破坏。这种酶促变化可分为直接作用和间接作用两类。直接以叶绿素为底物的只有叶绿素酶,催化叶绿素中植醇酯键水解而产生脱植醇叶绿素。脱镁叶绿素也是它的底物,产物是水溶性的脱镁脱植叶绿素,它是橄榄绿色的。叶绿素酶的最适温度为60-82℃,100℃时完全失活。起间接作用的有蛋白酶、酯酶、脂氧合酶、过氧化物酶、果胶酯酶等。蛋白酶和酯酶通过分解叶绿素蛋白质复合体,使叶绿素失去保护而更易遭到破坏。脂氧合酶和过氧化物酶可催化相应的底物氧化,其间产生的物质会引起叶绿素的氧化分解。果胶酯酶的作用是将果胶水解为果胶酸,从而提高了质子浓度,使叶绿素脱镁而被破坏。

相关文章

西湖大学又一篇Science,这次是李小波团队

北京时间2023年10月6日,西湖大学生命科学学院李小波团队在Science发表题为“Achlorophyllcsynthasewidelyco-optedbyphytoplankton”的文章,首次......

我国科学家破解叶绿体蛋白转运之谜

从西湖大学获悉,该校生命科学学院特聘研究员闫浈实验室的相关研究揭开了叶绿体蛋白转运之谜,其研究结果在线发表于《细胞》期刊。“光合作用被称为地球上最重要的化学反应。”闫浈介绍,叶绿体作为光合作用的重要场......

碱胁迫降低燕麦叶绿素含量分子机制

近日,中国农业科学院草原研究所草种质资源与育种团队揭示了碱处理抑制燕麦叶绿素积累的分子机制,相关研究成果发表在《植物科学前沿(FrontiersinPlantScience)》上。土地盐碱化是我国面临......

叶绿素和类胡萝卜素的吸收光谱有哪些差别?

叶绿素,是植物进行光合作用的主要色素,是一类含脂的色素家族,位于类囊体膜。叶绿素吸收大部分的红光和紫光但反射绿光,所以叶绿素呈现绿色,它在光合作用的光吸收中起核心作用。叶绿素为镁卟啉化合物,包括叶绿素......

研究揭示内陆浑浊水体叶绿素a浓度遥感定量反演算法

叶绿素a浓度是藻类生物量的指示指标,是水质的重要表征参数,也是水环境研究(还是常规监测)必须监测的指标。湖泊叶绿素浓度的调查不仅可以确定水体的营养状态,为湖泊治理和渔业资源管理提供基础信息,而且有助于......

我国基于湖泊类型的富营养化管理方案研究获进展

营养盐、叶绿素a和透明度的定量关系是富营养化管理的基础模型,如应用非常广泛的营养状态指数(TSI)就是基于上述关系构建的。然而,湖泊水文形态条件(如换水周期和水深)、物理化学因子(如光照和温度)和生物......

我国学者揭示千岛湖垂向叶绿素最大值分布位置

深水湖库往往存在垂向热力分层,决定了溶氧和营养盐等化学因子以及浮游植物和浮游动物等生物因子垂直分层和混合交换,进而深刻影响湖库生态系统结构和功能。在全球变化背景下,气温升高和富营养化加剧对湖库热力分层......

corallicolid不能进行光合作用也可产生叶绿素

顶复动物亚门(Apicomplexa)是一组专性细胞内寄生虫,包括疟疾和弓形虫病等人类疾病的致病因子。顶复动物亚门是由自由生活的光养性祖先进化而来的,但是人们对这种向寄生过渡的过程如何发生仍然是不清楚......

发现新奇生物:产生叶绿素但无光合作用,寄居七成珊瑚

科学家们首次发现了一种可产生叶绿素但不参与光合作用的生物体——“corallicolid”,其存在于全球70%的珊瑚中。研究发表于最新一期《自然》杂志,有望为人类更好地保护珊瑚礁提供新线索。加拿大不列......

Nature|发现无光合作用但能产生叶绿素的生物

Apicomplexa(apicomplexanparasites,顶复门寄生虫)是一类专性细胞内寄生虫。一些顶复门寄生虫是人类疾病的致病因子,如疟疾和弓形虫病。Apicomplexans是从光养生物......