近期,中国科学院合肥物质科学研究院固体物理研究所微纳技术与器件研究室研究员叶长辉课题组,在柔性超级电容器研究方面取得新进展,相关结果发表在Small 杂志上(Small, 2016, 12, 3059–3069)。
柔性可穿戴式及便携式电子器件,要求驱动其工作的供能器件不仅能提供足够的功率密度及能量密度,还需具有良好的柔韧性。超级电容器具有较高的功率密度、循环稳定性以及快速充放电的特性,是一种非常有应用潜力的供能器件,然而较低的能量密度一直限制着其实际应用。因此,如何进一步提高超级电容器的能量密度并使其柔性化是目前超级电容器研究领域的热点。
二氧化锰是一种具有高理论比容量的(1370 F g−1)的赝电容材料,非常有希望应用于高能量密度超级电容器的制备。然而其较差的固有电导率(10−5-10−6 S cm−1),使得单纯通过增加活性材料厚度无法提高其储电能力,严重阻碍了其在高能量密度超级电容器中的应用。该课题组研究人员基于前期发展的插指电极激光印刷技术(J. Mater. Chem. A, 2014, 2, 20916-20922),并结合电沉积技术,在柔性PET基底上制备了一种二氧化锰基三维叠层插指电极,并以此电极进一步制备了柔性超级电容器。这种三维叠层插指电极构型,可以有效地增加二氧化锰与金电极的接触面积,克服二氧化锰电导率较差的瓶颈问题,通过Z轴方向的叠加,在不增加电极面积的条件下,有效地增加电极活性材料的总体厚度,增大了器件的面电容密度。通过这种电极结构设计,获得的柔性超级电容器可以达到11.9 mF cm-2 的最大面电容密度,并且理论上可以通过进一步的电极叠加,获得更高的面电容密度。
此外,研究小组还受邀撰写了关于微型超级电容器的综述文章(Energy Storage Materials,2015,1,82–102)。
上述研究工作得到了国家自然科学基金和中科院国际团队项目的资助。
图:(a) 制备工艺流程图;(b) 三维叠层插指电极侧切面扫描电镜图;(c)不同层数三维叠层插指电极在不同面电流密度下的面电容密度图;(d)器件在90°弯曲角度下的循环伏安曲线图(内插图为器件在90°弯曲角下的光学照片)。
近日,中国科学院大连化学物理研究所研究员吴忠帅团队与研究员陆瑶、德国德累斯顿工业大学和马普所微观结构物理研究所教授冯新亮合作,在高集成度微型超级电容器模块方面取得新进展。他们发展了图案化粘附性基底诱导......
新加坡南洋理工大学的魏磊教授、七院院士高华建教授,以及中科院苏州纳米所的张其冲和中科院深圳先进技术研究院的陈明,共同发表了一篇关于高性能半导体纤维的最新研究成果。这篇题为“High-qualityse......
近日,中国科学院大连化学物理研究所研究员吴忠帅团队和辽宁省肿瘤医院张鑫丰教授团队合作,在环境友好和可植入式储能器件开发方面取得新进展,研制出了可自然降解且生物相容的可植入微型超级电容器。相关成果发表在......
近日,中科院大连化物所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员团队和辽宁省肿瘤医院张鑫丰教授团队合作在环境友好和可植入式储能器件开发方面取得新进展,研制出可自然降解且......
实验室自动化是一个不可逆转的趋势,尤其在人工智能时代。在这个时代,大规模、高质量的实验数据对于算法验证和迭代至关重要。实验室自动化不仅能加快实验速度,提高时间利用率,还能降低耗材消耗,提升实验通量,生......
随着电子技术的快速发展,便携式、功能性和可穿戴电子设备的需求增加。具有高功率转换效率(PCE)、重量轻、低温可加工性、固有灵活性以及与曲面的兼容性的柔性钙钛矿太阳能电池(f-PSC)在建筑集成光伏、无......
美国麻省理工学院的一项新研究表明,人类拥有的最普遍且历史悠久的两种材料——水泥和炭黑,可能是构成一种新的、低成本储能系统的基础。以特定的方式将它们结合在一起,会得到一种导电纳米复合材料。该技术可促进太......
据最新一期《自然·材料》杂志报道,美国麻省理工学院领导的国际团队开发出一种不含金属的、类似果冻的材料,它像生物组织一样柔软和坚韧,同时可像传统金属一样导电。这种材料可制成打印墨水,有朝一日或成为功能性......
随着光伏技术的快速发展,具有高效率和低成本特性的钙钛矿太阳能电池(PSCs)备受关注,具有替代传统晶硅电池的潜力。尤其是柔性钙钛矿太阳能电池(f-PSCs)在光伏建筑(BIPV)、分布式发电、便携式设......
为保证学术交流不“断档”,继续努力引领国际柔性电子学术研究发展,12月10-11日,清华大学柔性电子技术实验室、浙江清华柔性电子技术研究院、钱塘科技创新中心以“云端会议”形式联合举办了第四届国际柔性电......